论文阅读:Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
前言
- 要弄清MAML怎么做,为什么这么做,就要看懂这两张图。
- 先说MAML**在做什么?**它是打着Mate-Learing的旗号干的是few-shot multi-task Learning的事情。具体而言就是想训练一个模型能够使用很少的新样本,快速适应新的任务。
定义问题
- 我们定义一个模型 f f f, 输入 x x x输出 a a a。
-定义每一个Task - T T T包含一个损失函数 L L L, 一个原始观察 q ( x 1 ) q(x_1) q(x1), 一个状态转移分布 q ( x 1 ∣ x t , a t ) q(x_1 | x_t,a_t) q(x1∣xt,at)以及集长度 H H H。在监督任务中H=1(也就是说当前的a只和当前的x有关)。

元学习方法介绍
- 元学习,被称为“Learn to Learn”的方法。元学习希望获取一个网络(结构+参数),满足一定的预设要求。
- 在我们的元学习场景中,我们考虑了一个跨任务的分布 p ( T ) p(T) p(T),我们希望我们的模型能够适应这个分布。在 K -shot学习的设置中,模型被训练来学习一个新的任务 T i T_i Ti,这个任务是从 p ( T ) p(T) p(T) 中抽取的,只使用了从 q i q_i qi 抽取的 K 个样本,并且由 T i T_i Ti 生成的反馈 L T i L_{T_i} LTi。在元训练期间,从 p ( T ) p(T) p(T) 中抽取一个任务 T i T_i Ti,模型会用从 T i T_i Ti 中抽取的 K 个样本和相应的损失 L T i L_{T_i} LTi的反馈进行训练,然后在来自 T i T_i Ti 的新样本上进行测试。然后,通过考虑模型在新数据上的测试误差更新参数,来改进模型 f f f。实际上,对抽样的任务 T i T_i Ti 进行的测试误差充当了元学习过程的训练错误。在元训练结束时,从 p ( T ) p(T) p(T) 中抽取新任务,并通过模型从 K 个样本中学习后的表现来衡量元能力。通常,在元训练期间保留用于元测试的任务。
A Model-Agnostic Meta-Learning Algorithm
-
给定一个初始的神经网络结构及参数,使用针对同一领域的多个任务集作为样本,对每个任务集分配这样一个网络,不同的任务集对各自的网络做一次loss计算和梯度更新,然后对所有更新之后的神经网络再计算一次loss,将这些loss综合考虑起来作为一个新的loss,来更新那个最开始的神经网络,再将获得到的网络作为新的初始神经网络,迭代这个过程。—引用自
-
这种方法背后的直觉是,一些内部表示比其他表示更可转移。The intuition behind this approach is that some internal representations are more transferrable than others.
-
实际上,我们的目标是找到对任务变化最敏感的模型参数,这样当改变梯度的方向,损失的小改变参数将产生大改进,如下图。

-
我们定义一个模型表示为 f θ f_{\theta} fθ。当适应新的任务 T i T_i Ti时,模型参数从 θ \theta θ变为 θ i ′ \theta'_i θi′.在我们的方法中,我们更新参数使用一个或多个任务T T i T_i Ti梯度向量.
-
当使用一个梯度进行更新:

-
而元-目标是:

-整个算法如下:

相关文章:
论文阅读:Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
前言 要弄清MAML怎么做,为什么这么做,就要看懂这两张图。先说MAML**在做什么?**它是打着Mate-Learing的旗号干的是few-shot multi-task Learning的事情。具体而言就是想训练一个模型能够使用很少的新样本,快速适应新的任务。 定…...
基于Web的旅游推荐网站设计与实现(论文+源码)_kaic
【摘 要】 当前,众所周知的旅游产业已慢慢成为全世界经济领域中最具代表影响力和最大领域的产业之一,互联网的蓬勃发展也为旅游业带来了新的机遇。并且旅游网站已经逐渐成为管理旅游信息的主要模式。因此,开发一个稳定性良好、可用性强的旅游…...
继承AndroidView Model的错误
ViewModelProvider(this)[RegisterViewModel::class.java] 一行简单的代码,总是报这个错误 Caused by: java.lang.NoSuchMethodException: com.xinfa.registerlogin.viewmodel.LoginViewModel. [class android.app.Application] 经过一下午的思索,终于找…...
智慧互联,有序充电--多场景充电
企业微电网能效及充电管理解决方案 安科瑞 崔丽洁 1、企业需求(目的地充电) 站在企业的角度,除了要主动承担碳达峰、碳中和的社会责任,也需要考虑自身的经营和利润,需要结合企业的现状进行改造 企业微电网平台——与…...
yum install libreoffice‘ returned a non-zero
The command ‘/bin/sh -c yum install libreoffice’ returned a non-zero code: 1 1. 异常信息 Is this ok [y/d/N]: Exiting on user command Your transaction was saved, rerun it with:yum load-transaction /tmp/yum_save_tx.2023-08-28.13-42.EftXfl.yumtx The comman…...
Linux知识点 -- 网络基础(一)
Linux知识点 – 网络基础(一) 文章目录 Linux知识点 -- 网络基础(一)一、网络发展二、协议1.OSI七层模型2.TCP/IP五层(或四层)模型 三、网络传输基本流程1.局域网中的两台主机通信流程2.跨网段的两台主机间…...
【leetcode刷题之路】剑指Offer(4)——分治+排序算法+动态规划
文章目录 8 分治算法8.1 【递归】剑指 Offer 07 - 重建二叉树8.2 【递归】【快速幂】剑指 Offer 16 - 数值的整数次方8.3 【递归】剑指 Offer 33 - 二叉搜索树的后序遍历序列8.4 【递归】【分治】剑指 Offer 17 - 打印从1到最大的n位数8.5 【归并排序】【分治】剑指 Offer 51 -…...
美创科技“签”手柠檬文才学堂,共推高校数据安全建设
近日,由柠檬文才学堂联合中国教育在线、东北财经大学网络教育学院共同主办的“三教统筹下高校继续教育数字化转型研讨”顺利召开。 国内高等院校(高职院校)继续教育分管领导,继续教育学院领导及继续教育信息化、教学教务管理、课程…...
【JAVA基础】数据类型,逻辑控制
❤️ Author: 老九 ☕️ 个人博客:老九的CSDN博客 🙏 个人名言:不可控之事 乐观面对 😍 系列专栏: 文章目录 数据类型整型变量 int长整型变量 long单精度浮点数 float双精度浮点数 double字符类型 char字节…...
计算机竞赛 基于图像识别的跌倒检测算法
前言 🔥 优质竞赛项目系列,今天要分享的是 基于图像识别的跌倒检测算法 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/…...
计算机竞赛 基于大数据的股票量化分析与股价预测系统
文章目录 0 前言1 课题背景2 实现效果3 设计原理QTChartsarma模型预测K-means聚类算法算法实现关键问题说明 4 部分核心代码5 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 基于大数据的股票量化分析与股价预测系统 该项目较为新颖…...
input子系统
内核分三层 1、事件处理层 2、核心层 3、设备驱动层 当硬件按下,在设备驱动中触发中断,中断程序会将事件上报给核心层 核心层将事件给事件处理层,最后事件处理层控制app应用层的怎么操作将数据发送到用户空间...
mac 10.13.6安装后开发准备工作
git下载安装 xcode旧版安装搜索 brew国内源安装 brew国内源安装地址2 brew更换源 SwitchHosts github hosts nfts磁盘读写工具 更新ssl证书 证书下载 然后备份一下系统原来的pem文件 cp /etc/ssl/cert.pem /etc/ssl/cert.bak.pem 之后将新下载的pem文件,拷贝到/etc…...
C++ using关键字
C using关键字 using关键字用来简化代码和提高可读性。 using关键字提供了一种灵活的方式,可以在C中导入命名空间和定义别名。 1. 导入命名空间 using namespace 可以将一个命名空间中的所有名称导入到当前作用域中,从而可以直接使用该命名空间中的所…...
让你对es有一个初步的了解
首先es在海量数据的搜索能力非常好,es你可以把他看成一个搜索引擎数据库,他是个非关系型数据库。他的语法有很大的不同,好像都是json风格的。还有一点需要说的就是es 的数据是存在硬盘上的, 我们先来看一下mysql和es的区别吧。一…...
编绎和优化,脚本代码小米加步枪赶超英法美
编程达人:冰冻牡蛎 测试,总结》》 今有空,继续看了一下竹笋大师几天前提出的“使用for循环查找10亿内可被7整除的数的个数”的题目(相关文件:群文件 10亿以内多少个数字可以整除7.7z ) 1. 论输出的exe大小…...
数字电路-二进制学习
什么是二进制? 数字电路 中 只有 高电平 和低电平 就是 1 和0 进位规则是“逢二进一”,借位规则是“借一当二”。 二进制、八进制 、十进制、十六进制 二进制 有两个数来表示 : 0、1 八进制 有8个数来表示 : 0、1、2、3、4、…...
运维Shell脚本小试牛刀(一)
运维Shell脚本小试牛刀(一) 运维Shell脚本小试牛刀(二) 一: Shell中循环剖析 for 循环....... #!/bin/bash - # # # # FILE: countloop.sh # USAGE: ./countloop.sh # DESCRIPTION: # OPTIONS: ------- # …...
screen命令,可以断开服务器连接,依旧能运行你的程序了
可以参考博客1:https://blog.csdn.net/nima_zhang_b/article/details/82797928 可以参考博客2:https://blog.csdn.net/herocheney/article/details/130984403 Linux中的screen是一个命令行工具,可以让用户在同一个终端会话中创建多个虚拟终端。它非常有…...
【ArcGIS Pro二次开发】(63):批量更改字段别名
在我工作中遇到的大多数图斑,字段名称一般是英文,字段别名是中文,使用起来是比较方便的。 但有时候也会遇到一些不一样的情况,不知是经过了怎样的处理,图斑的字段别名被修改成了和字段名称一样的英文,这样…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...
23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
376. Wiggle Subsequence
376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...
中医有效性探讨
文章目录 西医是如何发展到以生物化学为药理基础的现代医学?传统医学奠基期(远古 - 17 世纪)近代医学转型期(17 世纪 - 19 世纪末)现代医学成熟期(20世纪至今) 中医的源远流长和一脉相承远古至…...
Mysql8 忘记密码重置,以及问题解决
1.使用免密登录 找到配置MySQL文件,我的文件路径是/etc/mysql/my.cnf,有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...
怎么让Comfyui导出的图像不包含工作流信息,
为了数据安全,让Comfyui导出的图像不包含工作流信息,导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo(推荐) 在 save_images 方法中,删除或注释掉所有与 metadata …...
毫米波雷达基础理论(3D+4D)
3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文: 一文入门汽车毫米波雷达基本原理 :https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...
nnUNet V2修改网络——暴力替换网络为UNet++
更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...
Python训练营-Day26-函数专题1:函数定义与参数
题目1:计算圆的面积 任务: 编写一个名为 calculate_circle_area 的函数,该函数接收圆的半径 radius 作为参数,并返回圆的面积。圆的面积 π * radius (可以使用 math.pi 作为 π 的值)要求:函数接收一个位置参数 radi…...
精益数据分析(98/126):电商转化率优化与网站性能的底层逻辑
精益数据分析(98/126):电商转化率优化与网站性能的底层逻辑 在电子商务领域,转化率与网站性能是决定商业成败的核心指标。今天,我们将深入解析不同类型电商平台的转化率基准,探讨页面加载速度对用户行为的…...
