当前位置: 首页 > news >正文

day-04 基于UDP的服务器端/客户端

一.理解UDP

(一)UDP套接字的特点

UDP套接字具有以下特点:

  • 无连接性:UDP是一种无连接的协议,这意味着在发送数据之前,不需要在发送方和接收方之间建立连接。每个UDP数据包都是独立的,它们可以独立地发送和接收,而不需要维护连接状态。

  • 不可靠性:UDP是一种不可靠的协议,这意味着它不提供数据传输的可靠性保证。UDP数据包在发送过程中可能会丢失、重复、乱序或损坏,而UDP协议本身不提供任何机制来检测和纠正这些问题。因此,应用程序需要自行处理这些问题。

  • 高效性:由于UDP不需要建立连接和维护连接状态,它的开销比TCP更小,传输效率更高。UDP适用于那些对实时性要求较高,但对数据可靠性要求相对较低的应用场景,如音频和视频流传输。

  • 面向数据报:UDP是一种面向数据报的协议,每个UDP数据包都是一个独立的数据报,具有固定的大小。UDP数据包的大小限制为64KB,超过这个大小的数据需要进行分片和重新组装。

  • 支持多播和广播:UDP支持多播和广播功能,可以将数据同时发送给多个接收方。多播是一种一对多的通信方式,广播是一种一对所有的通信方式。

        总的来说,UDP套接字具有无连接性、不可靠性、高效性、面向数据报和支持多播和广播等特点。它适用于那些对实时性要求较高,但对数据可靠性要求相对较低的应用场景。

(二)UDP内部工作原理

UDP的内部工作原理如下:

  • 创建套接字:在UDP通信之前,需要创建UDP套接字。套接字是一个网络通信的端点,用于发送和接收数据。通过调用操作系统提供的套接字API,可以创建一个UDP套接字。

  • 绑定端口:在创建UDP套接字后,需要将套接字绑定到一个特定的端口上。这样,其他应用程序就可以通过指定该端口来与UDP套接字进行通信。

  • 发送数据:要发送数据,应用程序将数据写入UDP套接字的发送缓冲区。操作系统将从发送缓冲区中获取数据,并将其封装成UDP数据包。然后,操作系统将UDP数据包发送到目标IP地址和端口。

  • 接收数据:要接收数据,应用程序需要监听UDP套接字。当有UDP数据包到达时,操作系统将从网络中接收数据包,并将其放入UDP套接字的接收缓冲区。应用程序可以从接收缓冲区中读取数据。

  • 处理数据:应用程序可以从接收缓冲区中读取数据,并对数据进行处理。由于UDP是无连接的协议,每个UDP数据包都是独立的,应用程序需要自行处理数据包的顺序、丢失、重复和损坏等问题。

  • 关闭套接字:当UDP通信结束时,应用程序可以关闭UDP套接字,释放相关资源。

        总的来说,UDP的内部工作原理涉及创建套接字、绑定端口、发送数据、接收数据和处理数据等步骤。UDP是一种简单的协议,不提供连接状态维护和可靠性保证,但具有较低的开销和较高的传输效率。

(三)UDP的高效使用

要高效使用UDP,可以考虑以下几点:

  • 数据包大小:UDP数据包的大小限制为64KB,超过这个大小的数据需要进行分片和重新组装。为了提高传输效率,可以尽量减小数据包的大小,避免数据分片和重新组装的开销。

  • 数据压缩:对于需要传输的数据,可以考虑使用数据压缩算法进行压缩,减小数据包的大小。常见的数据压缩算法包括gzip、zlib等。

  • 并发处理:UDP是无连接的协议,每个UDP数据包都是独立的。为了提高处理效率,可以使用多线程或多进程的方式,并发处理接收到的UDP数据包。

  • 丢包处理:由于UDP是不可靠的协议,数据包在传输过程中可能会丢失。为了提高可靠性,可以在应用层实现丢包检测和重传机制。例如,可以使用序列号和确认应答的方式来检测丢包,并进行重传。

  • 超时设置:为了避免数据包长时间滞留在网络中,可以设置合适的超时时间。如果在超时时间内没有收到对应的确认应答,可以进行重传。

  • 流量控制:为了避免发送方发送过多的数据导致接收方无法及时处理,可以实现流量控制机制。例如,可以使用滑动窗口的方式控制发送方的发送速率。

  • 多播和广播:UDP支持多播和广播功能,可以将数据同时发送给多个接收方。通过合理使用多播和广播,可以提高数据传输的效率。

        总的来说,要高效使用UDP,可以考虑数据包大小、数据压缩、并发处理、丢包处理、超时设置、流量控制和多播/广播等方面的优化策略。根据具体的应用场景和需求,可以选择适合的优化方法。

二.实现基于UDP的服务器端/客户端

1.UDP中的服务器端和客户端没有连接

2.UDP服务器端和客户端均只需一个套接字

3.基于UDP的数据I/O函数

基于UDP的数据I/O函数通常使用以下两个函数:

1.sendto():该函数用于向指定的目标地址发送UDP数据包。它的函数原型如下:

ssize_t sendto(int sockfd, const void *buf, size_t len, int flags, const struct sockaddr *dest_addr, socklen_t addrlen);

        参数说明:

  • sockfd:UDP套接字的文件描述符。
  • buf:要发送的数据的指针。
  • len:要发送的数据的字节数。
  • flags:发送标志,通常设置为0。
  • dest_addr:目标地址的结构体指针,包括IP地址和端口号。
  • addrlen:目标地址结构体的长度。

        该函数将指定的数据发送到目标地址。如果发送成功,返回发送的字节数;如果发送失败,返回-1,并设置相应的错误码。

2.recvfrom():该函数用于从指定的源地址接收UDP数据包。它的函数原型如下:

ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags, struct sockaddr *src_addr, socklen_t *addrlen);

        参数说明:

  • sockfd:UDP套接字的文件描述符。
  • buf:接收数据的缓冲区指针。
  • len:接收数据的最大字节数。
  • flags:接收标志,通常设置为0。
  • src_addr:源地址的结构体指针,用于存储发送方的IP地址和端口号。
  • addrlen:源地址结构体的长度。

        该函数从指定的UDP套接字接收数据,并将数据存储到指定的缓冲区中。如果接收成功,返回接收的字节数;如果接收失败,返回-1,并设置相应的错误码。

4.基于UDP的回声服务器端/客户端

uecho_server.cpp
#include <iostream>
#include <cstring>
#include <arpa/inet.h>
#include <sys/socket.h>#define BUFFER_SIZE 1024int main() {// 创建UDP套接字int server_socket = socket(AF_INET, SOCK_DGRAM, 0);// 绑定服务器地址和端口struct sockaddr_in server_address{};server_address.sin_family = AF_INET;server_address.sin_addr.s_addr = htonl(INADDR_ANY);server_address.sin_port = htons(8888);bind(server_socket, (struct sockaddr*)&server_address, sizeof(server_address));std::cout << "服务器已启动,等待客户端连接..." << std::endl;while (true) {// 接收数据char buffer[BUFFER_SIZE];struct sockaddr_in client_address{};socklen_t client_address_length = sizeof(client_address);ssize_t received_bytes = recvfrom(server_socket, buffer, BUFFER_SIZE, 0, (struct sockaddr*)&client_address, &client_address_length);buffer[received_bytes] = '\0';std::cout << "接收到来自客户端 " << inet_ntoa(client_address.sin_addr) << " 的数据:" << buffer << std::endl;// 发送数据回客户端sendto(server_socket, buffer, strlen(buffer), 0, (struct sockaddr*)&client_address, client_address_length);}return 0;
}
uecho_client.cpp
#include <iostream>
#include <cstring>
#include <arpa/inet.h>
#include <sys/socket.h>#define BUFFER_SIZE 1024int main() {// 创建UDP套接字int client_socket = socket(AF_INET, SOCK_DGRAM, 0);// 服务器地址和端口struct sockaddr_in server_address{};server_address.sin_family = AF_INET;server_address.sin_addr.s_addr = inet_addr("127.0.0.1");server_address.sin_port = htons(8888);while (true) {// 输入要发送的数据char message[BUFFER_SIZE];std::cout << "请输入要发送的数据:";std::cin.getline(message, BUFFER_SIZE);// 发送数据到服务器sendto(client_socket, message, strlen(message), 0, (struct sockaddr*)&server_address, sizeof(server_address));// 接收服务器返回的数据char buffer[BUFFER_SIZE];socklen_t server_address_length = sizeof(server_address);ssize_t received_bytes = recvfrom(client_socket, buffer, BUFFER_SIZE, 0, (struct sockaddr*)&server_address, &server_address_length);buffer[received_bytes] = '\0';std::cout << "接收到服务器返回的数据:" << buffer << std::endl;}return 0;
}

5.UDP的数据传输特性和调用connect函数

        UDP存在数据边界,所以调用几次 sendto 函数去发送,就调用几次 recvfrom 函数去接收。

(1)已连接(connected)UDP套接字和未连接(unconnected)UDP套接字

        sendto 函数的传输阶段

  •         向UDP套接字注册目标IP和端口号
  •         传输数据
  •         删除UDP套接字中注册的目标地址信息

        UDP套接字默认属于未连接套接字。但在对同一主机进行通信时,过多的增删套接字中目标地址信息,很明显显得多余。所以将UDP套接字变成已连接套接字会提高效率。

相关文章:

day-04 基于UDP的服务器端/客户端

一.理解UDP &#xff08;一&#xff09;UDP套接字的特点 UDP套接字具有以下特点&#xff1a; 无连接性&#xff1a;UDP是一种无连接的协议&#xff0c;这意味着在发送数据之前&#xff0c;不需要在发送方和接收方之间建立连接。每个UDP数据包都是独立的&#xff0c;它们可以独…...

FFmpeg rtp rtp_mpegts的区别

rtp 在FFmpeg中&#xff0c;rtpenc是一个用于将音视频数据封装成RTP&#xff08;Real-time Transport Protocol&#xff09;数据包并发送到网络上的编码器。RTP是一种用于实时传输音视频数据的协议&#xff0c;常用于视频会议、流媒体等场景。 rtpenc可以将音视频数据封装成R…...

【链表OJ】相交链表 环形链表1

前言: &#x1f4a5;&#x1f388;个人主页:​​​​​​Dream_Chaser&#xff5e; &#x1f388;&#x1f4a5; ✨✨刷题专栏:http://t.csdn.cn/UlvTc ⛳⛳本篇内容:力扣上链表OJ题目 目录 一.leetcode 160. 相交链表 1.问题描述: 2.解题思路: 二.leetcode 141.环形链表 …...

DevOps之自动化测试

什么是自动化测试&#xff1f; 明确一下自动化测试不是什么。自动化测试不是指自动化生成测试代码&#xff0c;而是自动化地执行由开发人员或测试人员编写的测试代码。正如下面这句谚语&#xff1a;“绝不要手工去做任何可以被自动化处理的事情。——Curt Hibbs” 之前是由人…...

Java 程序打印 OpenCV 的版本

我们可以使用 Java 程序来使用 OpenCV。 OpenCV 的使用需要动态库的加载才可以。 加载动态库 到 OpenCV 的官方网站上下载最新的发布版本。 Windows 下载的是一个可执行文件&#xff0c;没关系&#xff0c;这个可执行文件是一个自解压程序。 当你运行以后会提示你进行解压。…...

ChatGPT⼊门到精通(2):ChatGPT 能为我们做什么

⼀、雇佣免费的⼲活⼩弟 有了ChatGPT后&#xff0c;就好⽐你有了好⼏个帮你免费打⼯的「⼩弟」&#xff0c;他们可以帮你做很多 ⼯作。我简单总结⼀些我⽬前使⽤过的⽐较好的基于ChatGPT的服务和应⽤。 1、总结、分析 当我们在阅读⼀些⽂章和新闻的时候&#xff0c;有的⽂章写…...

线程和进程的区别是什么?

线程(Thread)和进程(Process)是操作系统中两个重要的概念,用于管理程序的执行。它们有以下区别: 定义:进程:进程是程序的一个执行实例,它包含了程序的代码、数据以及执行上下文。进程是操作系统分配资源和调度的基本单位。线程:线程是进程的子执行单元,一个进程可以…...

力扣27.移除元素

27. 移除元素 提示 简单 1.9K 相关企业 给你一个数组 nums 和一个值 val&#xff0c;你需要 原地 移除所有数值等于 val 的元素&#xff0c;并返回移除后数组的新长度。 不要使用额外的数组空间&#xff0c;你必须仅使用 O(1) 额外空间并 原地 修改输入数组。 元素的顺序…...

指针(个人学习笔记黑马学习)

1、指针的定义和使用 #include <iostream> using namespace std;int main() {int a 10;int* p;p &a;cout << "a的地址为&#xff1a;" << &a << endl;cout << "a的地址为&#xff1a;" << p << endl;…...

vue 路由动态加载

在 Vue.js 中&#xff0c;可以使用 webpack 的动态导入语法来实现路由动态加载。下面是一个简单的示例&#xff1a; const Home () > import(/* webpackChunkName: "home" */ ./views/Home.vue); const About () > import(/* webpackChunkName: "about…...

电脑识别不了固态硬盘怎么办?

在使用固态硬盘时&#xff0c;可能会出现电脑无法识别的情况&#xff0c;这时我们就无法使用固态硬盘中的数据。那么&#xff0c;电脑识别不了固态硬盘怎么办&#xff1f; 为什么电脑识别不了固态硬盘&#xff1f; 一般来说&#xff0c;电脑识别不了固态硬盘是因为以下3个原因…...

QCustomPlot 绘制卡顿问题

大数据量导致曲线绘制卡顿问题 这里提供一个思路在跟踪源码中发现底层卡顿在vector的resize() 此处扩容中 所以尽量使用下面的接口 /*! \overloadAdds the provided data point as \a key and \a value to the current data.Alternatively, you can also access and modify t…...

uni-app开发小程序,radio单选按钮,点击可以选中,再次点击可以取消

一、实现效果&#xff1a; 二、代码实现&#xff1a; 不适用官方的change方法&#xff0c;自己定义点击方法。 动态判断定义的值是否等于遍历的值进行回显&#xff0c;如果和上一次点击的值一样&#xff0c;就把定义的值改为null <template><view><radio-group&…...

【Qt专栏】实现单例程序,禁止程序多开的几种方式

目录 一&#xff0c;简要介绍 二&#xff0c;实现示例&#xff08;Windows&#xff09; 1.使用系统级别的互斥机制 2.通过共享内存&#xff08;进程间通信-IPC&#xff09; 3.使用命名互斥锁&#xff08;不推荐&#xff09; 4.使用文件锁 5.通过网络端口检测 一&#xf…...

力扣26. 删除有序数组中的重复项

给你一个 升序排列 的数组 nums &#xff0c;请你 原地 删除重复出现的元素&#xff0c;使每个元素 只出现一次 &#xff0c;返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 nums 中唯一元素的个数。 考虑 nums 的唯一元素的数量为 k &#xff0c;你需要做…...

【机器学习】鸢尾花分类-逻辑回归示例

这段代码是一个完整的示例&#xff0c;展示了如何使用逻辑回归对鸢尾花数据集进行训练、保存模型&#xff0c;并允许用户输入数据进行预测。以下是对这段代码的总结&#xff1a;功能&#xff1a; 这段代码演示了如何使用逻辑回归对鸢尾花数据集进行训练&#xff0c;并将训练好的…...

Flink CDC介绍

1.CDC概述 CDC&#xff08;Change Data Capture&#xff09;是一种用于捕获和处理数据源中的变化的技术。它允许实时地监视数据库或数据流中发生的数据变动&#xff0c;并将这些变动抽取出来&#xff0c;以便进行进一步的处理和分析。 传统上&#xff0c;数据源的变化通常通过…...

Java集合sort排序报错UnsupportedOperationException处理

文章目录 报错场景排查解决UnmodifiableList类介绍 报错场景 我们使用的是PostgreSQL数据库&#xff0c;存储业务数据&#xff0c;业务代码使用的是Spring JPA我们做的是智慧交通信控平台&#xff0c;有个功能是查询展示区域的交通态势&#xff0c;需要按照不同维度排序展示区…...

安防监控/磁盘阵列存储/视频汇聚平台EasyCVR调用rtsp地址返回的IP不正确是什么原因?

安防监控/云存储/磁盘阵列存储/视频汇聚平台EasyCVR可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标准协议有GB28181、RTSP/Onvif、RTMP等&#xff0c;以及厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等&#xff0c;能对外分发RTSP、RT…...

Spring boot开启定时任务

Cron表达式生成器 基于接口的方式 使用Scheduled 注解很方便&#xff0c;但缺点是当我们调整了执行周期的时候&#xff0c;需要重启应用才能生效&#xff0c;这多少有些不方便。为了达到实时生效的效果&#xff0c;那么可以使用接口来完成定时任务&#xff0c;统一将定时器信…...

OpenLayers 可视化之热力图

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 热力图&#xff08;Heatmap&#xff09;又叫热点图&#xff0c;是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

C++.OpenGL (10/64)基础光照(Basic Lighting)

基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

k8s从入门到放弃之Pod的容器探针检测

k8s从入门到放弃之Pod的容器探针检测 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;容器探测是指kubelet对容器执行定期诊断的过程&#xff0c;以确保容器中的应用程序处于预期的状态。这些探测是保障应用健康和高可用性的重要机制。Kubernetes提供了两种种类型…...

生信服务器 | 做生信为什么推荐使用Linux服务器?

原文链接&#xff1a;生信服务器 | 做生信为什么推荐使用Linux服务器&#xff1f; 一、 做生信为什么推荐使用服务器&#xff1f; 大家好&#xff0c;我是小杜。在做生信分析的同学&#xff0c;或是将接触学习生信分析的同学&#xff0c;<font style"color:rgb(53, 1…...

关于 ffmpeg设置摄像头报错“Could not set video options” 的解决方法

若该文为原创文章&#xff0c;转载请注明原文出处 本文章博客地址&#xff1a;https://hpzwl.blog.csdn.net/article/details/148515355 长沙红胖子Qt&#xff08;长沙创微智科&#xff09;博文大全&#xff1a;开发技术集合&#xff08;包含Qt实用技术、树莓派、三维、OpenCV…...