当前位置: 首页 > news >正文

五、Kafka消费者

目录

    • 5.1 Kafka的消费方式
    • 5.2 Kafka 消费者工作流程
      • 1、总体流程
      • 2、消费者组原理
      • 3、==消费者组初始化流程==
      • 4、==消费者组详细消费流程==
    • 5.3 消费者API
      • 1 独立消费者案例(订阅主题)
      • 2 独立消费者案例(订阅分区)
      • 3 消费者组案例
    • 5.4 生产经验——分区的分配以及再平衡
      • 1、 Range 以及再平衡
        • 1)Range 分区策略原理
        • 2)Range 分区分配策略demo演示
        • 3)Range 分区分配再平衡案例
      • 2 RoundRobin 以及再平衡
        • 1)RoundRobin 分区策略原理
        • 2)RoundRobin 分区分配策略demo
        • 3)RoundRobin 分区分配再平衡案例
      • 3 Sticky 以及再平衡
        • 1) 定义
        • 2) Sticky 分区策略demo演示
        • 3)Sticky 分区分配再平衡
    • 5.5 offset位移
      • 1、offset 的默认维护位置
        • 1)__consumer_offsets 查看
      • 2、自动提交 offset
        • 1)消费者自动提交 offset
      • 3、手动提交 offset
        • 1)同步提交 offset
        • 2)异步提交 offset
      • 4、指定Offset进行消费
      • 5、指定时间进行消费
      • 6 、漏消费和重复消费
      • 7 生产经验——数据积压

5.1 Kafka的消费方式

pull(拉)模 式:consumer采用从broker中主动拉取数据。Kafka采用这种方式。

缺点: pull模式不足之处是,如 果Kafka没有数据,消费者可能会陷入循环中,一直返回空数据

push(推)模式:Kafka没有采用这种方式,因为由broker决定消息发送速率,很难适应所有消费者的消费速率



5.2 Kafka 消费者工作流程

1、总体流程

【注意】

  • 消费者只能从主分区上拉取数据,从节点起到同步和冗余数据的作用
  • 每个分区的数据只能由消费者组中一个消费者消费
  • 一个消费者可以消费多个分区数据
  • 每个消费者的offset由消费者提交到系统主题保存
    在这里插入图片描述

2、消费者组原理

Consumer Group(CG):消费者组,由多个consumer组成。形成一个消费者组的条件,是所有消费者的groupid相同。

  • 消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费。
  • 消费者组之间互不影响。所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者
    在这里插入图片描述
    在这里插入图片描述

3、消费者组初始化流程

4、消费者组详细消费流程

在这里插入图片描述



5.3 消费者API

1 独立消费者案例(订阅主题)

public class CustomConsumer {public static void main(String[] args) {// 0 配置Properties properties = new Properties();// 连接 bootstrap.serversproperties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.239.11:9092");// 反序列化properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());// 配置消费者组idproperties.put(ConsumerConfig.GROUP_ID_CONFIG,"test5");// 设置分区分配策略// 1 创建一个消费者  "", "hello"KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);// 2 订阅主题 firstArrayList<String> topics = new ArrayList<>();topics.add("first");kafkaConsumer.subscribe(topics);// 3 消费数据while (true){ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {System.out.println(consumerRecord);}kafkaConsumer.commitAsync();}}
}

在这里插入图片描述

2 独立消费者案例(订阅分区)

public class CustomConsumerPartition {public static void main(String[] args) {// 0 配置Properties properties = new Properties();// 连接properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092");// 反序列化properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());// 组idproperties.put(ConsumerConfig.GROUP_ID_CONFIG,"test");// 1 创建一个消费者KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);// 2 订阅主题对应的分区ArrayList<TopicPartition> topicPartitions = new ArrayList<>();topicPartitions.add(new TopicPartition("first",0));kafkaConsumer.assign(topicPartitions);// 3 消费数据while (true){ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {System.out.println(consumerRecord);}}}
}

3 消费者组案例

1)需求:测试同一个主题的分区数据,只能由一个消费者组中的一个消费
在这里插入图片描述



5.4 生产经验——分区的分配以及再平衡

1、 Range 以及再平衡

1)Range 分区策略原理

在这里插入图片描述

【缺点】 容易产生数据倾斜



2)Range 分区分配策略demo演示

①、创建7个分区的topic
在这里插入图片描述
②、启动 CustomProducer 生产者,发送7条消息到 0 - 6号分区

public class CustomProducerCallback {public static void main(String[] args) throws InterruptedException {// 0 配置Properties properties = new Properties();// 连接集群 bootstrap.serversproperties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.239.11:9092");// 指定对应的key和value的序列化类型 key.serializer
//        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());// 1 创建kafka生产者对象KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);// 2 发送数据for (int i = 0; i < 7; i++) {kafkaProducer.send(new ProducerRecord<>("test", i, i + "", "houchen" + i), new Callback() {@Overridepublic void onCompletion(RecordMetadata metadata, Exception exception) {if (exception == null) {System.out.println("主题: " + metadata.topic() + " 分区: " + metadata.partition());}}});Thread.sleep(2);}// 3 关闭资源kafkaProducer.close();}
}

在这里插入图片描述

③、启动三个消费者,组成一个消费者组,查看各个消费者的消费情况

由下述结果确实可以看到 Kafka 默认的分区分配策略就是 Range

public class CustomConsumer {public static void main(String[] args) {// 0 配置Properties properties = new Properties();// 连接 bootstrap.serversproperties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.239.11:9092");// 反序列化properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());// 配置消费者组idproperties.put(ConsumerConfig.GROUP_ID_CONFIG,"mygroup");// 1 创建一个消费者 KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);// 2 订阅主题 firstArrayList<String> topics = new ArrayList<>();topics.add("test");kafkaConsumer.subscribe(topics);// 3 消费数据while (true){ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {System.out.println(consumerRecord);}kafkaConsumer.commitAsync();}}
}

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述



3)Range 分区分配再平衡案例

(1)停止掉 0 号消费者,快速重新发送消息观看结果(45s 以内,越快越好)。
1 号消费者:消费到 3、4 号分区数据。
2 号消费者:消费到 5、6 号分区数据。

0 号消费者的任务会整体被分配到 1 号消费者或者 2 号消费者。
说明:0 号消费者挂掉后,消费者组需要按照超时时间 45s 来判断它是否退出,所以需要等待,时间到了 45s 后,判断它真的退出就会把任务分配给其他 broker 执行。
在这里插入图片描述

(2)再次重新发送消息观看结果(45s 以后)。
1 号消费者:消费到 0、1、2、3 号分区数据。
2 号消费者:消费到 4、5、6 号分区数据。
说明:消费者 0 已经被踢出消费者组,所以重新按照 range 方式分配。
在这里插入图片描述
在这里插入图片描述



2 RoundRobin 以及再平衡

1)RoundRobin 分区策略原理

在这里插入图片描述


2)RoundRobin 分区分配策略demo

①、依次在 CustomConsumer、CustomConsumer1、CustomConsumer2 三个消费者代
码中修改分区分配策略为 RoundRobin

 //RoundRobin 分区分配策略properties.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG,"org.apache.kafka.clients.consumer.RoundRobinAssignor");

②、重启 3 个消费者,重复发送消息的步骤,观看分区结果
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述



3)RoundRobin 分区分配再平衡案例

停止掉 0 号消费者,快速重新发送消息观看结果(45s 以内,越快越好)。
1 号消费者:消费到 2、5 号分区数据
2 号消费者:消费到 4、1 号分区数据
0 号消费者的任务会按照 RoundRobin 的方式,把数据轮询分成 0 和6 、 3 号分区数据,分别由 1 号消费者或者 2 号消费者消费。
在这里插入图片描述
在这里插入图片描述

说明:0 号消费者挂掉后,消费者组需要按照超时时间 45s 来判断它是否退出,所以需要等待,时间到了 45s 后,判断它真的退出就会把任务分配给其他 broker 执行


(2)再次重新发送消息观看结果(45s 以后)。
1 号消费者:消费到 0、2、4、6 号分区数据
2 号消费者:消费到 1、3、5 号分区数据
说明:消费者 0 已经被踢出消费者组,所以重新按照 RoundRobin 方式分配。



3 Sticky 以及再平衡

1) 定义

粘性分区定义:可以理解为分配的结果带有“粘性的”。即在执行一次新的分配之前,考虑上一次分配的结果,尽量少的调整分配的变动,可以节省大量的开销

2) Sticky 分区策略demo演示

3)Sticky 分区分配再平衡



5.5 offset位移

1、offset 的默认维护位置

在这里插入图片描述

__consumer_offsets 主题里面采用 key 和 value 的方式存储数据。key 是 group.id+topic+分区号,value 就是当前 offset 的值。每隔一段时间,kafka 内部会对这个 topic 进行compact,也就是每个 group.id+topic+分区号就保留最新数据


1)__consumer_offsets 查看

2、自动提交 offset

为了使我们能够专注于自己的业务逻辑,Kafka提供了自动提交offset的功能。

自动提交offset的相关参数:

  • enable.auto.commit:是否开启自动提交offset功能,默认是true
  • auto.commit.interval.ms:自动提交offset的时间间隔,默认是5s

在这里插入图片描述

1)消费者自动提交 offset

// 自动提交
properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,true);


3、手动提交 offset

虽然自动提交offset十分简单便利,但由于其是基于时间提交的,开发人员难以把握offset提交的时机。因此Kafka还提供了手动提交offset的API

手动提交offset的方法有两种:分别是commitSync(同步提交)和commitAsync(异步提交)。
两者的相同点是,都会将本次提交的一批数据最高的偏移量提交;
不同点是,同步提交阻塞当前线程,一直到提交成功,并且会自动失败重试(由不可控因素导致,也会出现提交失败);而异步提交则没有失败重试机制,故有可能提交失败。

  • commitSync(同步提交):必须等待offset提交完毕,再去消费下一批数据。
  • commitAsync(异步提交) :发送完提交offset请求后,就开始消费下一批数据了。

在这里插入图片描述


1)同步提交 offset

由于同步提交 offset 有失败重试机制,故更加可靠,但是由于一直等待提交结果,提交的效率比较低。以下为同步提交 offset 的示例。

public class CustomConsumerByHandSync {public static void main(String[] args) {// 0 配置Properties properties = new Properties();// 连接 bootstrap.serversproperties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.239.11:9092");// 反序列化properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());// 配置消费者组idproperties.put(ConsumerConfig.GROUP_ID_CONFIG,"test");// 手动提交properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,false);// 1 创建一个消费者  "", "hello"KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);// 2 订阅主题 firstArrayList<String> topics = new ArrayList<>();topics.add("first");kafkaConsumer.subscribe(topics);// 3 消费数据while (true){ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {System.out.println(consumerRecord);}// 手动提交offsetkafkaConsumer.commitSync();}}
}

2)异步提交 offset

虽然同步提交 offset 更可靠一些,但是由于其会阻塞当前线程,直到提交成功。因此吞吐量会受到很大的影响。因此更多的情况下,会选用异步提交 offset 的方式。

public class CustomConsumerByHandSync {public static void main(String[] args) {// 0 配置Properties properties = new Properties();// 连接 bootstrap.serversproperties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.239.11:9092");// 反序列化properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());// 配置消费者组idproperties.put(ConsumerConfig.GROUP_ID_CONFIG,"test");// 手动提交properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,false);// 1 创建一个消费者  "", "hello"KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);// 2 订阅主题 firstArrayList<String> topics = new ArrayList<>();topics.add("first");kafkaConsumer.subscribe(topics);// 3 消费数据while (true){ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {System.out.println(consumerRecord);}// 手动提交offsetkafkaConsumer.commitAsync();}}
}


4、指定Offset进行消费

public class CustomConsumerSeek {public static void main(String[] args) {// 0 配置信息Properties properties = new Properties();properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.239.11:9092");properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());properties.put(ConsumerConfig.GROUP_ID_CONFIG,"test3");// 1 创建消费者KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);// 2 订阅主题ArrayList<String> topics = new ArrayList<>();topics.add("second");kafkaConsumer.subscribe(topics);// 指定位置进行消费Set<TopicPartition> assignment = kafkaConsumer.assignment();//  保证分区分配方案已经制定完毕while (assignment.size() == 0){kafkaConsumer.poll(Duration.ofSeconds(1));assignment = kafkaConsumer.assignment();}// 指定消费的offsetfor (TopicPartition topicPartition : assignment) {kafkaConsumer.seek(topicPartition,100);}// 3  消费数据while (true){ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {System.out.println(consumerRecord);}}}
}


5、指定时间进行消费

需求:在生产环境中,会遇到最近消费的几个小时数据异常,想重新按照时间消费。
例如要求按照时间消费前一天的数据,怎么处理?

6 、漏消费和重复消费

7 生产经验——数据积压

在这里插入图片描述
在这里插入图片描述

相关文章:

五、Kafka消费者

目录 5.1 Kafka的消费方式5.2 Kafka 消费者工作流程1、总体流程2、消费者组原理3、消费者组初始化流程4、消费者组详细消费流程 5.3 消费者API1 独立消费者案例&#xff08;订阅主题&#xff09;2 独立消费者案例&#xff08;订阅分区&#xff09;3 消费者组案例 5.4 生产经验—…...

类 中下的一些碎片知识点

判断下面两个函数是否能同时存在 void Print(); void Pirnt() const 答&#xff1a;能同时存在&#xff0c;因为构成函数重载&#xff08;注意函数的返回值不同是不能构成函数重载的&#xff09;。 const 对象能调用 非const 成员函数吗 答&#xff1a;不能&#xff0c;因为权…...

JVM第二篇 类加载子系统

JVM主要包含两个模块&#xff0c;类加载子系统和执行引擎&#xff0c;本篇博客将类加载子系统做一下梳理总结。 目录 1. 类加载子系统功能 2. 类加载子系统执行过程 2.1 加载 2.2 链接 2.3 初始化 3. 类加载器分类 3.1 引导类加载器 3.2 自定义加载器 3.2.1 自定义加载器实…...

火爆全网!HubSpot CRM全面集成,引爆营销业绩!

HubSpot CRM是什么&#xff1f;它是一款强大的客户关系管理工具&#xff0c;专为企业优化销售、服务和市场营销流程而设计。它在B2B行业中扮演着极为重要的角色&#xff0c;让我来告诉你为什么吧&#xff01; HubSpot CRM不仅拥有用户友好的界面和强大的功能&#xff0c;还能够…...

远程调试环境

一、远程调试 1.安装vscode 2.打开vscode&#xff0c;下载插件Remote-SSH,用于远程连接 3.安装php debug 4.远程连接&#xff0c;连接到远端服务器 注&#xff1a;连接远程成功后&#xff0c;在远程依然要进行安装xdebug&#xff0c;刚才只是在vscode中进行的安装。 5.配置la…...

Java面试之用两个栈实现队列

文章目录 题目一、什么是队列和栈&#xff1f;1.1队列1.2栈 二、具体实现2.1 思路分析2.2代码实现 题目 用两个栈实现一个队列&#xff0c;实现在队列尾部插入节点和在队列头部删除节点的功能。 一、什么是队列和栈&#xff1f; 1.1队列 队列是一种特殊的线性表&#xff0c;…...

Python-实用的文件管理及操作

本章&#xff0c;来说说&#xff0c;个人写代码过程中&#xff0c;对于文件管理常用的几种操作。 三个维度 1、指定文件的路径拼接2、检查某文件是否存在3、配置文件的路径管理 1、指定文件的路径拼接 这个操作可以用来管理文件路径也就是上述中的第三点。但是&#xff0c;这里…...

Mysql 事物与存储引擎

MySQL事务 MySQL 事务主要用于处理操作量大&#xff0c;复杂度高的数据。比如说&#xff0c;在人员管理系统中&#xff0c; 要删除一个人员&#xff0c;即需要删除人员的基本资料&#xff0c;又需要删除和该人员相关的信息&#xff0c;如信箱&#xff0c; 文章等等。这样&#…...

java.lang.classnotfoundexception: com.android.tools.lint.client.api.vendor

Unity Android studio打包报错修复 解决方式 java.lang.classnotfoundexception: com.android.tools.lint.client.api.vendor 解决方式 在 launcherTemplate 目录下找到 Android/lintOptions 选项 加上 checkReleaseBuilds false lintOptions { abortOnError false checkRelea…...

pytest fixture夹具,@pytest.fixture

fixture 是pytest 用于测试前后进行预备&#xff0c;清理工作的代码处理机制 fixture相对于setup 和teardown&#xff1a; fixure &#xff0c;命名更加灵活&#xff0c;局限性比较小 conftest.py 配置里面可以实现数据共享&#xff0c;不需要import 就能自动找到一些配置 setu…...

YOLOv7源码解析

YOLOv7源码解析 YAML文件 YAML文件 以yolov7 cfg/yolov7-w6-pose.yaml为例&#xff1a; # parametersnc: 1 # number of classes nkpt: 4 # number of key points depth_multiple: 1.0 # model depth multiple width_multiple: 1.0 # layer channel multiple dw_conv_kpt:…...

2023高教社杯数学建模思路 - 复盘:校园消费行为分析

文章目录 0 赛题思路1 赛题背景2 分析目标3 数据说明4 数据预处理5 数据分析5.1 食堂就餐行为分析5.2 学生消费行为分析 建模资料 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 1 赛题背景 校园一卡通是集…...

ATF(TF-A)安全通告 TFV-2 (CVE-2017-7564)

安全之安全(security)博客目录导读 ATF(TF-A)安全通告汇总 目录 一、ATF(TF-A)安全通告 TFV-2 (CVE-2017-7564) 二、 CVE-2017-7564 一、ATF(TF-A)安全通告 TFV-2 (CVE-2017-7564) Title 启用安全自托管侵入式调试接口&#xff0c;可允许非安全世界引发安全世界panic CV…...

无涯教程-PHP - 标量函数声明

在PHP 7中&#xff0c;引入了一个新函数&#xff0c;即标量类型声明。标量类型声明有两个选项- Coercive - 强制性是默认模式。Strict - 严格模式必须明确提示。 可以使用上述模式强制执行以下类型的函数参数- intfloatbooleanstringinterfacesarraycallable 强制模…...

动态规划(Dynamic programming)讲解(线性 DP 篇)

文章目录 动态规划&#xff08;Dynamic Programing&#xff09;第一关&#xff1a;线性DP第一战&#xff1a; C F 191 A . D y n a s t y P u z z l e s \color{7F25DF}{CF191A.\space Dynasty\enspace Puzzles} CF191A. DynastyPuzzles题目描述难度&#xff1a; ☆☆☆ \color…...

提升开发能力的低代码思路

一、低代码理念 在现代软件开发中&#xff0c;低代码开发平台备受关注。那么&#xff0c;什么是低代码开发平台呢&#xff1f;简单来说&#xff0c;它是一种能够提供丰富的图形化用户界面&#xff0c;让开发者通过拖拽组件和模型就能构建应用的开发环境。与传统开发方式相比&am…...

YAML详解及使用方法

YAML详解及使用方法 一、基本介绍二、数据类型2.1 纯量(scalars)/标量2.1.1 字符串2.1.2 保留换行(Newlines preserved)2.1.3 布尔值&#xff08;Boolean)2.1.4 整数&#xff08;Integer&#xff09;2.1.5 浮点数&#xff08;Floating Point&#xff09;2.1.6 空&#xff08;Nu…...

垃圾回收器

垃圾回收器就是垃圾回收的实践者&#xff0c;随着JDK的发展&#xff0c;垃圾回收器也在不断的更迭&#xff0c;在不同的场合下使用不同的垃圾回收器&#xff0c;这也是JVM调优的一部分。 1.垃圾回收器的分类 按线程可分为单线程(串行)垃圾回收器和多线程(并行)垃圾回收器。 按…...

SpringBoot 读取配置文件的值为 Infinity

1.配置信息 appid&#xff1a;6E212341234 2.获取方式 Value("${admin}")private String admin; 获取到结果 Infinity 3.修改方案 配置信息上加号 appid&#xff1a;‘6E212341234 yml中使用[单引号]不会转换单引号里面的特殊字符&#xff0c;使用""[双…...

学习笔记230827--vue项目中,子组件拿不到父组件异步获取数据的问题

&#x1f9cb; 问题描述 父组件的数据是请求后台所得&#xff0c;因为是异步数据&#xff0c;就会出现&#xff0c;父组件的值传递过去了&#xff0c;子组件加载不到&#xff0c;拿不到值的问题。 下面从同步数据传递和异步数据传递开始论述问题 &#x1f9cb;&#x1f9cb;1…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

以光量子为例,详解量子获取方式

光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学&#xff08;silicon photonics&#xff09;的光波导&#xff08;optical waveguide&#xff09;芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中&#xff0c;光既是波又是粒子。光子本…...

【笔记】WSL 中 Rust 安装与测试完整记录

#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统&#xff1a;Ubuntu 24.04 LTS (WSL2)架构&#xff1a;x86_64 (GNU/Linux)Rust 版本&#xff1a;rustc 1.87.0 (2025-05-09)Cargo 版本&#xff1a;cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...