大数据风控介绍
众所周知,金融是数据化程度最高的行业之一,也是人工智能和大数据技术重要的应用领域。随着大数据收集、存储、分析和模型技术日益成熟,大数据技术逐渐应用到金融风控的各个环节。个推作为专业的数据智能服务商,拥有海量数据资源,在智慧金融领域也推出了相应的数据解决方案-个真,为金融客户提供智能反欺诈、多维信贷风险评估和高意愿用户智能筛选等全流程的数据服务,助力各金融机构全面提升风控能力。本文将围绕大数据风控,结合个推实践,介绍金融风控机器学习的基本流程、算法实践和产品化建设等内容。
风控流程 & 多维度特征
大数据风控的内容
数据是风控的核心要素,大数据风控实际上就是对数据的处理、建模和应用的过程。大数据风控的流程主要分为四个阶段:数据获取、数据分析、数据建模、风控产品应用。对获取到的海量数据进行清洗和挖掘,有针对性地对金融特征进行深加工;接着通过规则策略和模型算法的构建,对外输出相应的风控服务。
个推以消息推送服务起家,为数十万APP提供高效稳定的推送服务,并沉淀了丰富的数据资源,覆盖超过40亿终端设备,数据全面、广泛且有深度。利用设备基础信息、线上APP偏好数据、线下场景数据以及外部补充数据,个推构建了8个维度、350+特征,同时对特征进行动态更新。基本属性、资产、金融、行为偏好、社会属性、消费偏好、风险和稳定性构成了个推金融数据的八大维度;个推利用数据的八大维度,逾350种特征进行模型构建,并将其应用于金融风控各环节。
金融风控机器学习的基本流程
整个风控建模流程,在个推大数据平台上完成。首先,对持续更新的海量一手数据进行收集、清洗、存储,在数据存储前进行ID打通;第二步,对清洗好的原数据进行特征构建;最后,利用多维度特征进行金融风控模型构建,用到的技术包括协同推荐算法、LR算法、XGBoost、营销模型、多头模型和信用分模型等。
建模流程
如何高效构建特征,是风控建模中一个至关重要的问题。在实践中,个推会对特征进行稳定性分析、脏数据/异常数据处理、特征分箱、特征聚合和特征有效性验证。特征评估指标则包括IV值、Gain值、单调性、稳定性和饱和度等。
风控场景机器学习的算法实践
利用上述多维度特征和建模能力,增能于贷前、贷中和贷后全流程:拉、选、评、管、催五大环节。
全流程数据增能
拉-营销模型,甄别虚假注册,评估借贷意愿
在拉新获客阶段,个推制定贴合大额、小额两种营销场景需求的营销模型,通过规则策略、模型策略、风控策略三管齐下,帮助客户识别“真人”,有效降低获客成本、提升注册率和转化率。客户可通过提供样本数据,通过个推来完成建模,同时,在缺乏样本数据的情况下,个推依托自身积累的海量样本数据,可以构建出多种营销场景下的通用模型,供客户使用。
选-贷前的审核,识别欺诈人群,防范恶意骗贷
贷前审核阶段我们通常采取两个策略:欺诈分模型、风险人群筛选。欺诈分模型指的是根据客户提供的数据信息在个推平台进行数据转换、特征匹配,并对其风险特征予以筛选,利用预设规则予以打分,最后得出相应的欺诈分。个推在逾350种特征中识别出数几十种风险特征。举例来说,当某用户安装小贷类APP达到多款以上,或线下到访场景异常,或该用户命中黑名单都会被识别为风险特征。根据欺诈分的高低予以排序,为客户列出不准入人员、需重点关注人员等。
风险人群筛选指的是根据用户存在的风险特征数量及程度,梳理出风险人员。个推利用筛选出的8种维度、350+特征,通过模型预测和规则制定,输出三类风险人群:黑名单、灰名单、多头名单。多头名单顾名思义,当某用户频繁安装或卸载多款借贷类APP时则会被模型系统判定为多头人员;灰名单指的是稳定性较差的人员,黑名单指的是异常人员。在贷前审核阶段,黑名单人员可直接不予以准入,灰名单和多头人员则需要重点关注。
评-信用分模型,贷前信用评估,辅助贷款定额
在评的阶段,个推采用信用分模型,为客户输出用户的信用评分。信用评分由五种维度构建而成:资产、身份、稳定性、关系、行为。个推信用评分模型先根据模型训练与规则模型,得到各个维度分,再将五个维度的个人评分作为特征输入模型,作为特征得到总体个人信用分。
信用分模型由多个模型整合而成,第一层是分类模型(lr+xgboost),得到分值;第二层在维度分的基础上再进行回归,得到最终信用评分。
管-贷中管控,监测异常特征,实现风险预警
在管的环节,个推采用贷中监测模型。从整体人群筛选出逾期相似(相关)人群,结合实时数据与高危特征异常监测得到高疑用户,结合客户的实际需求,对此类用户通过进一步的精准研判得到逾期风险人员,将此类人员告知客户,让其予以重点关注或排查。
催-贷后催管,催回价值评估,提高催回效率
在催的环节,个推基于自身构建的催回评分系统,可以有效指导金融机构制定差异化催管策略,助力更高效地完成催收工作。比如,当客户出现逾期和坏账时,金融机构通过个推的催回评分,对用户的还款能力和还款意愿进行评估,从而判断哪些用户优先催。
风控系统产品化
前面几个流程主要讲的是个推利用多维度特征自主构建风控模型,但在很多业务场景客户希望快速构建特征、快速返回风控结果。为此,我们研发上线个真决策引擎,在规则设计层为客户提供风控规则,让业务人员在规则执行层通过规则性加工进行灵活操作,目前已提供给部分客户试用。
风控决策引擎
如今,科技与金融深度交融的时代已经到来,金融风险控制任重而道远,。个推将持续挖掘其丰富的数据资产,不断打磨自身技术,助力金融行业运作效率和服务能力的全面提升。
大数据实践——构建新特征指标与构建风控模型
https://blog.csdn.net/Tianweidadada/article/details/88902581/
相关文章:

大数据风控介绍
众所周知,金融是数据化程度最高的行业之一,也是人工智能和大数据技术重要的应用领域。随着大数据收集、存储、分析和模型技术日益成熟,大数据技术逐渐应用到金融风控的各个环节。个推作为专业的数据智能服务商,拥有海量数据资源&a…...

Linux内核学习(九)—— 虚拟文件系统(基于Linux 2.6内核)
虚拟文件系统(VFS)作为内核子系统,为用户空间程序提供了文件和文件系统相关的接口。通过虚拟文件系统,程序可以利用标准的 Unix 系统调用对不同的文件系统(甚至不同介质上的文件系统)进行读写操作。 一、通…...

【模拟】算法实战
文章目录 一、算法原理二、算法实战1. leetcode1576 替换所有的问号2. leetcode495 提莫攻击3. leetcode6 N字形变换4. leetcode38 外观数列5. leetcode1419 数青蛙 三、总结 一、算法原理 模拟就是用计算机来模拟题目中要求的操作,模拟题目通常具有代码量大、操作…...

各个微服务模块之间互相依赖调用的问题
首先是模块之间不能够循环引用,否则会报循环依赖引入的错误。 没有了模块之间的相互依赖,在项目中这两个模块是相互调用的,分别各自定义相应的Feign接口,如下: 最开始写的运行报错的代码如下: FeignCli…...

理论转换实践之keepalived+nginx实现HA
背景: keepalivednginx实现ha是网站和应用服务器常用的方法,之前项目中单独用nginx实现过负载均衡和服务转发,keepalived一直停留在理论节点,加之最近工作编写的一个技术文档用到keepalived,于是便有了下文。 服务组件…...

华为OD七日集训第1期复盘 - 按算法分类,由易到难,循序渐进,玩转OD(文末送书)
目录 一、活动内容如下第1天、逻辑分析第2天、字符串处理第3天、数据结构第4天、双指针第5天、递归回溯第6天、二分查找第7天、贪心算法 && 二叉树 二、可观测性工程1、简介2、主要内容 大家好,我是哪吒。 最近一直在刷华为OD机试的算法题,坚持…...

MPI之持久化通信句柄与非持久化通信句柄
MPI_Isend & MPI_Send 创建临时通信句柄 在前面的文章中举了例子,我们使用MPI_Isend接口发送数据时,有个传出参数request,该参数是创建的通信句柄, 实际上该句柄是一个临时句柄,即只用于一次性发送数据的场景&…...

搭建个人备忘录中心服务memos、轻量级笔记服务
目录 一、源码 二、官网 三、搭建 四、使用 一、源码 GitHub - usememos/memos: A privacy-first, lightweight note-taking service. Easily capture and share your great thoughts. 二、官网 memos - Easily capture and share your great thoughts 三、搭建 docke…...
探究代理技术在网络安全、爬虫与HTTP通信中的多重应用
在当今高度互联的世界中,代理技术在网络安全、爬虫开发以及HTTP通信中扮演着举足轻重的角色。本文将深入探讨Socks5代理、IP代理以及HTTP代理在这些领域中的多重应用,探索其如何为我们创造更安全、高效的网络环境。 1. Socks5代理:构建安全通…...

vue左侧漏斗切换 echart图表动态更新
这个需求是根据点击左侧的箭头部分,右侧图表切换,左侧选中数据高亮(图片用的svg) 一、效果图 二、vue组件 <template><div class"funnel_wrap"><div class"flex_between"><div class&q…...

Centos7安装ZK-UI管理界面安装|Maven|Git|
一: JDK1.8安装 参考: Centos7卸载|安装JDK1.8|Xshell7批量控制多个终端 二:Maven安装 2.1:下载maven安装包 maven 下载地址:https://mirror.bit.edu.cn/apache/maven/maven-3/ [rootwww ~]# mkdir -p /usr/local/maven [rootwww ~]# …...
C语言日常刷题7
文章目录 题目答案与解析1234567 题目 1、如下程序的运行结果是( ) char c[5]{a, b, \0, c, \0}; printf("%s", c)A: ‘a’ ‘b’ B: ab\0c\0 C: ab c D: ab 2、若有定义: int a[2][3]; ,以下选项中对 a 数组元素正确…...
037 - 有关时间和日期的函数方法
文档:MySQL :: MySQL 5.7 Reference Manual :: 12.7 Date and Time Functions 以下为案例,更多内容可查看文档 返回当前日期: CURDATE() 返回当前时间: CURTIME() 返回当前日期和时间: NOW() 返回年份&a…...

(JAVA)树——tree
...
js判断对象是否为空对象的方法总结
js判断对象是否为空对象的方法总结 方法1:JSON.stringify()方法方法2:for in方法方法3:Object.keys()方法方法4:Object.getOwnPropertyNames()方法方法5:jquery 的 isEmptyObject()方法 在面试或者开发过程中ÿ…...
LeetCode1049. 最后一块石头的重量 II
1049. 最后一块石头的重量 II 文章目录 [1049. 最后一块石头的重量 II](https://leetcode.cn/problems/last-stone-weight-ii/)一、题目二、题解方法一:01背包二维数组算法思路具体实现 方法二:01背包一维数组 一、题目 有一堆石头,用整数数…...

universal robot 机械臂 官方基本教程
https://academy.universal-robots.cn/modules/e-Series-core-track/Chinese/module3/story_html5.html?courseId2166&languageChinese 教程1 控制箱内部 包含: 主机板,SD卡,和安全控制板 安全控制板负责所有控制信息,包括…...
网络常见安全漏洞
引言 随着互联网的迅猛发展,网络安全问题日益严重。在网络世界中,各种常见的安全漏洞给人们的通信和数据安全带来了巨大的威胁。本文将介绍一些常见的网络安全漏洞,并提供一些防范措施。 1. XSS(跨站脚本攻击) 跨站…...

【JS案例】JS实现图片放大镜功能
JS案例图片放大镜 🌟效果展示 🌟HTML结构 🌟CSS样式 🌟实现思路 🌟具体实现 1.初始化数据图片 2.获取所需DOM元素 3.初始化页面 初始化缩略图 绑定事件 🌟完整代码 🌟写在最后 &…...

linux centos7 bash中字符串反向输出
给定一个字符串,如何反向(倒序)输出? 字符串反转的方法:a.对各个字符位置进行循环调换(从原字符串左边取出放在新字符串的右边;从原字符串右边取出放在新字符串的左边)。b.对各个字符由水平排列转为垂直排…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
【生成模型】视频生成论文调研
工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...

leetcode_69.x的平方根
题目如下 : 看到题 ,我们最原始的想法就是暴力解决: for(long long i 0;i<INT_MAX;i){if(i*ix){return i;}else if((i*i>x)&&((i-1)*(i-1)<x)){return i-1;}}我们直接开始遍历,我们是整数的平方根,所以我们分两…...

工厂方法模式和抽象工厂方法模式的battle
1.案例直接上手 在这个案例里面,我们会实现这个普通的工厂方法,并且对比这个普通工厂方法和我们直接创建对象的差别在哪里,为什么需要一个工厂: 下面的这个是我们的这个案例里面涉及到的接口和对应的实现类: 两个发…...
大模型真的像人一样“思考”和“理解”吗?
Yann LeCun 新研究的核心探讨:大语言模型(LLM)的“理解”和“思考”方式与人类认知的根本差异。 核心问题:大模型真的像人一样“思考”和“理解”吗? 人类的思考方式: 你的大脑是个超级整理师。面对海量信…...