【ICLR 2022】重新思考点云中的网络设计和局部几何:一个简单的残差MLP框架
文章目录
- RETHINKING NETWORK DESIGN AND LOCAL GEOMETRY IN POINT CLOUD: A SIMPLE RESIDUAL MLP FRAMEWORK
- PointMLP
- 残差点模块
- 几何仿射模块
- 精简版模型:PointMLP-elite
- 实验结果
- 消融实验
RETHINKING NETWORK DESIGN AND LOCAL GEOMETRY IN POINT CLOUD: A SIMPLE RESIDUAL MLP FRAMEWORK
现有的基于点的点云分析深度模型为了捕获3D局部几何信息,设计了复杂的局部几何特征提取器。然而,这些方法的复杂度很高,且性能提升在近几年中趋于饱和。这篇文章认为局部几何信息可能不是点云分析的关键,提出了一个简单而有效的深度残差MLP网络:PointMLP。实验结果展示了即使没有精心设计的局部几何特征提取器,使用单纯的深层MLP架构也能在一些任务上得到令人满意的性能和更好的结果。
PointMLP
推荐阅读:【NIPS 2017】PointNet++:度量空间中点集的深层次特征学习 https://binaryai.blog.csdn.net/article/details/124942017
PointNet++提出了一个用于点云分析的通用Pipeline,其局部特征提取器可以公式化为:
其中A\mathcal{A}A为汇聚(aggregation)函数(PointNet++为max-pooling),Φ(⋅)\mathcal{\Phi(\cdot)}Φ(⋅)表示局部特征提取函数(PointNet++为MLP);fi,jf_{i,j}fi,j为第iii个点的第jjj个近邻点的特征。
PointMLP与现有的方法一样,延用了PointNet++的Pipeline。但与现有的许多方法(使用卷积、图或自注意机制设计局部特征提取器Φ(⋅)\mathcal{\Phi(\cdot)}Φ(⋅)。)不同,PointMLP没有使用复杂的局部几何特征提取器。
如图2所示,PointMLP每个阶段包括残差点模块(Residual Point (ResP) Block)和几何仿射模块(Geometric Affine Module)。残差点模块通过简单的前馈残差MLP来学习点云的特征。轻量级的几何仿射模块用于对局部点进行标准化,以进一步提高模型鲁棒性和性能。
通过堆叠图2中的模块,可以构建深层次的点云分析深度网络。
残差点模块
PointMLP中的的核心操作可以表述为:
其中Φpre(⋅)\mathcal{\Phi_{pre}(\cdot)}Φpre(⋅)和Φpos(⋅)\mathcal{\Phi_{pos}(\cdot)}Φpos(⋅)为残差点模块:MLP(x)+x\operatorname{MLP} (x) + xMLP(x)+x(MLP(x)\operatorname{MLP} (x)MLP(x)由全连接层、归一化层和激活层组合(重复两次)),Φpre(⋅)\mathcal{\Phi_{pre}(\cdot)}Φpre(⋅)用于学习局部区域的共享参数;Φpos(⋅)\mathcal{\Phi_{pos}(\cdot)}Φpos(⋅)用于提取汇聚的特征;与PointNet++一样,A\mathcal{A}A为max-pooling。
几何仿射模块
令{fi.j}j=1,...,k∈Rk×d\{f_{i.j}\}_{j=1,...,k}\in \mathbb{R}^{k\times d}{fi.j}j=1,...,k∈Rk×d为fif_ifi的kkk个局部邻点的特征组合。每个邻点特征fi,jf_{i,j}fi,j为ddd维向量。几何仿射模块通过以下公式标准化局部相邻点的特征:
其中α∈Rd\alpha\in \mathbb{R}^dα∈Rd和β∈Rd\beta \in \mathbb{R}^dβ∈Rd为可学习的参数,⊙\odot⊙为逐元素乘积。ϵ=1e−5\epsilon=1e^{-5}ϵ=1e−5是为了数值稳定性。σσσ是一个标量,描述了所有局部分组和通道的特征偏差。
精简版模型:PointMLP-elite
PointMLP:
PointMLP-elite:
精简版的PointMLP(PointMLP-elite)主要做了以下调整:
-
减少了残差点模块的数量;
-
减少嵌入特征;
-
Φpre(⋅)\mathcal{\Phi_{pre}(\cdot)}Φpre(⋅)和Φpos(⋅)\mathcal{\Phi_{pos}(\cdot)}Φpos(⋅)采用瓶颈(Bottleneck)结构:首先将特征通道数量减少rrr倍,然后再将通道数量增加rrr倍。
实验结果
SHAPE CLASSIFICATION ON MODELNET40
SHAPE CLASSIFICATION ON SCANOBJECTNN
PART SEGMENTATION
消融实验
Network Depth
Geometric Affine Module
Component ablation
study.
Loss landscape
相关文章:

【ICLR 2022】重新思考点云中的网络设计和局部几何:一个简单的残差MLP框架
文章目录RETHINKING NETWORK DESIGN AND LOCAL GEOMETRY IN POINT CLOUD: A SIMPLE RESIDUAL MLP FRAMEWORKPointMLP残差点模块几何仿射模块精简版模型:PointMLP-elite实验结果消融实验RETHINKING NETWORK DESIGN AND LOCAL GEOMETRY IN POINT CLOUD: A SIMPLE RESI…...
《MySQL学习》 count(*) 原理
一 . count(*)的实现方式 MyISAM 引擎把一个表的总行数存在了磁盘上,因此执行 count() 的时候会直接返回这个数,效率很高; 而 InnoDB 引擎就麻烦了,它执行 count(*) 的时候,需要把数据一行一行…...

时间序列数据预测的类型
本文主要内容是使用LSTM网络进行不同类型的时间序列预测任务,不涉及代码,仅仅就不同类型的预测任务和数据划分进行说明。 参考文章:https://machinelearningmastery.com/how-to-develop-lstm-models-for-time-series-forecasting/ 注…...

sk_buff结构体成员变量说明
一. 前言 Socket Buffer的数据包在穿越内核空间的TCP/IP协议栈过程中,数据内容不会被修改,只是数据包缓冲区中的协议头信息发生变化。大量操作都是围绕sk_buff结构体来进行的。 sk_buff结构的成员大致分为3类:结构管理域,常规数据…...

springbatch设置throttle-limit参数不生效
背景描述 当springbatch任务处理缓慢时,就需要使用多线程并行处理任务。 参数throttle-limit用于控制当前任务能够使用的线程数的最大值。 调整throttle-limit为10时,处理线程只有8,再次增大throttle-limit值为20,处理线程依旧为…...

用 tensorflow.js 做了一个动漫分类的功能(一)
前言:浏览某乎网站时发现了一个分享各种图片的博主,于是我顺手就保存了一些。但是一张一张的保存实在太麻烦了,于是我就想要某虫的手段来处理。这样保存的确是很快,但是他不识图片内容,最近又看了 mobileNet 的预训练模…...
看完这篇Vue-element-admin,跟面试官聊骚没问题
Vue-element-admin vue-element-admin 是一个后台前端解决方案,它基于 vue 和 element-ui实现。它使用了最新的前端技术栈,内置了 i18 国际化解决方案,动态路由,权限验证,提炼了典型的业务模型,提供了丰富…...

2022年全国职业院校技能大赛(中职组)网络安全竞赛试题A(5)
目录 模块A 基础设施设置与安全加固 一、项目和任务描述: 二、服务器环境说明 三、具体任务(每个任务得分以电子答题卡为准) A-1任务一 登录安全加固(Windows) 1.密码策略 a.密码策略必须同时满足大小写字母、数…...

基于Java+SpringBoot+Vue+Uniapp前后端分离商城系统设计与实现
博主介绍:✌全网粉丝3W,全栈开发工程师,从事多年软件开发,在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战✌ 博主作品:《微服务实战》专栏是本人的实战经验总结,《Spring家族及…...
新建ES别名 添加别名 切换别名
# 查询别名指向到哪个索引 GET bebd_factory_search/_alias # 查询这个索引使用了什么别名 GET bebd_factory_search_1588250935622/_alias # 删除索引 DELETE bebd_factory_search_1588250935622 # 新建别名 POST /_aliases { "actions": [ { "ad…...

MySQL —— 内外连接
目录 表的内外连接 一、内连接 二、外连接 1. 左外连接 2. 右外连接 表的内外连接 表的连接分为内连和外连 一、内连接 内连接实际上就是利用where子句对两种表形成的笛卡儿积进行筛选,我们前面博客中的查询都是内连接,也是在开发过程中使用的最多…...
EXCEL中文本和数字的相互转换方法
将EXCEL中存为文本的数字转换成数字 如果在 Excel 中,将数字存储为文本格式,可以通过以下步骤将其转换为数字: 选中需要转换格式的单元格或者整列;右键单击,选择“格式单元格”;在弹出的对话框中选择“常…...

React源码分析6-hooks源码
本文将讲解 hooks 的执行过程以及常用的 hooks 的源码。 hooks 相关数据结构 要理解 hooks 的执行过程,首先想要大家对 hooks 相关的数据结构有所了解,便于后面大家顺畅地阅读代码。 Hook 每一个 hooks 方法都会生成一个类型为 Hook 的对象ÿ…...

Windows10神州网信政府版麦克风、摄像头的使用
Windows10神州网信政府版默认麦克风摄像头是禁用状态,此禁用状态符合版本规定。 在录课和直播过程中,如果需要使用麦克风和摄像头的功能,可以这样更改: 1、鼠标右键点击屏幕左下角的开始菜单图标,选择windows中的“运…...

微机原理学习总结0:前言
近期结束了微机课程的学习,(指刚考完试),正常情况下,后面应该不会再接触这门课程了,故在此记录自己这段时间的收获。 首先,十分推荐b站的一门课程,老师讲的很细致,很适合…...

LeetCode 1828. 统计一个圆中点的数目
给你一个数组 points ,其中 points[i] [xi, yi] ,表示第 i 个点在二维平面上的坐标。多个点可能会有 相同 的坐标。 同时给你一个数组 queries ,其中 queries[j] [xj, yj, rj] ,表示一个圆心在 (xj, yj) 且半径为 rj 的圆。 对…...

Spring Boot + Vue3 前后端分离 实战 wiki 知识库系统<一>---Spring Boot项目搭建
前言: 接下来又得被迫开启新的一门课程的学习了,上半年末尾淘汰又即将拉开序幕【已经记不清经历过多少次考试了】,需要去学习其它领域的技术作为考试内容,我选了spring boot相关技术,所以。。总之作为男人,…...

leetcode 11~20 学习经历
LeetCode 习题 11 - 2011. 盛最多水的容器12. 整数转罗马数字13. 罗马数字转整数14. 最长公共前缀15. 三数之和16. 最接近的三数之和17. 电话号码的字母组合18. 四数之和19. 删除链表的倒数第 N 个结点20. 有效的括号小结11. 盛最多水的容器 给定一个长度为 n 的整数数组 heigh…...

LeetCode 双周赛 98,脑筋急转弯转不过来!
本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问。 大家好,我是小彭。 昨晚是 LeetCode 第 98 场双周赛,你参加了吗?这场周赛需要脑筋急转弯,转不过来 Medium 就会变成 Hard&#…...

函数的栈帧的创建和销毁
文章目录本章主题:一.什么是函数栈帧1.什么是栈2.什么是函数栈帧二.理解函数栈帧能解决什么问题呢?三.函数栈帧的创建和销毁解析1.预备知识(1) 认识相关寄存器和汇编指令(2)栈帧空间的维护2.解析函数栈帧的…...

【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动
一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...

JavaScript 中的 ES|QL:利用 Apache Arrow 工具
作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

论文笔记——相干体技术在裂缝预测中的应用研究
目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...