(二十)大数据实战——Flume数据采集的基本案例实战
前言
本节内容我们主要介绍几个Flume数据采集的基本案例,包括监控端口数据、实时监控单个追加文件、实时监控目录下多个新文件、实时监控目录下的多个追加文件等案例。完成flume数据监控的基本使用。
正文
- 监控端口数据
①需求说明
- 使用 Flume 监听一个端口,收集该端口数据,并打印到控制台
②需求分析:
③安装netcat 工具:sudo yum install -y nc
④查看监听端口1111是否被占用:注意测试端口的范围是0-65535
⑤在flume安装目录下创建一个job目录:用与存放监听数据的配置文件
⑥在job目录下创建监听数据的配置文件:job-netcat-flume-console.conf
# Name the components on this agent #a1:表示agent的名称,不能重复 a1.sources = r1 #r1:表示a1的Source的名称 a1.sinks = k1 #k1:表示a1的Sink的名称 a1.channels = c1 #c1:表示a1的Channel的名称 # Describe/configure the source a1.sources.r1.type = netcat #表示a1的输入源类型为netcat端口类型 a1.sources.r1.bind = localhost #表示a1的监听的主机 a1.sources.r1.port = 1111 #表示a1的监听的端口号 # Describe the sink a1.sinks.k1.type = logger #表示a1的输出目的地是控制台logger类型 # Use a channel which buffers events in memory a1.channels.c1.type = memory #表示a1的channel类型是memory内存型 a1.channels.c1.capacity = 1000 #表示a1的channel总容量1000个event a1.channels.c1.transactionCapacity = 100 #表示a1的channel传输时收集到了100条event以后再去提交事务 # Bind the source and sink to the channel a1.sources.r1.channels = c1 #表示将r1和c1连接起来 a1.sinks.k1.channel = c1 #表示将k1和c1连接起来
⑦开启 flume服务监听端口:
bin/flume-ng agent -c conf/ -n a1 -f job/job-netcat-flume-console.conf -Dflume.root.logger=INFO,console
⑧启动参数说明:
--conf/-c:表示配置文件存储在 conf/目录
--name/-n:表示给 agent 起名为 a1
--conf-file/-f:flume本次启动读取的配置文件是在job文件夹下的job-netcat-flume-console.conf文件
-Dflume.root.logger=INFO,console :-D 表示 flume 运行时动态修改 flume.root.logger 参数属性值,并将控制台日志打印级别设置为 INFO 级别。日志级别包括:log、info、warn、 error
⑨使用netcat 工具向本机的1111端口发送内容
- 实时监控单个追加文件
①监控需求
- 实时监控Hive日志,并上传到HDFS
②需求分析:
③在job目录下创建监听数据的配置文件:job-file-flume-hdfs.conf
# Name the components on this agent a2.sources = r2 a2.sinks = k2 a2.channels = c2 # Describe/configure the source a2.sources.r2.type = exec #hive日志的默认位置 a2.sources.r2.command = tail -F /tmp/hadoop/hive.log # Describe the sink a2.sinks.k2.type = hdfs a2.sinks.k2.hdfs.path = hdfs://hadoop101:8020/flume/%Y%m%d/%H #上传文件的前缀 a2.sinks.k2.hdfs.filePrefix = logs- #是否按照时间滚动文件夹 a2.sinks.k2.hdfs.round = true #多少时间单位创建一个新的文件夹 a2.sinks.k2.hdfs.roundValue = 1 #重新定义时间单位 a2.sinks.k2.hdfs.roundUnit = hour #是否使用本地时间戳 a2.sinks.k2.hdfs.useLocalTimeStamp = true #积攒多少个Event才flush到 HDFS一次 a2.sinks.k2.hdfs.batchSize = 100 #设置文件类型,可支持压缩 a2.sinks.k2.hdfs.fileType = DataStream #多久生成一个新的文件 a2.sinks.k2.hdfs.rollInterval = 60 #设置每个文件的滚动大小 a2.sinks.k2.hdfs.rollSize = 134217700 #文件的滚动与Event数量无关 a2.sinks.k2.hdfs.rollCount = 0 # Use a channel which buffers events in memory a2.channels.c2.type = memory a2.channels.c2.capacity = 1000 a2.channels.c2.transactionCapacity = 100 # Bind the source and sink to the channel a2.sources.r2.channels = c2 a2.sinks.k2.channel = c2
④启动hadoop集群
⑤启动flume监控任务
bin/flume-ng agent --conf conf/ --name a2 --conf-file job/job-file-flume-hdfs.conf -Dflume.root.logger=INFO,console
⑥启动hive
⑦查看hdfs是否有监控日志
⑧存在的问题
- tail命令不能实现断点续传监控的功能,可能会有数据丢失的情况或者数据重复的问题
- Exec source 适用于监控一个实时追加的文件,不能实现断点续传
- 实时监控目录下多个新文件
①监控需求
- 使用 Flume 监听整个目录的文件,并上传至 HDFS
②需求分析
③在job目录下创建监听目录数据的配置文件:job-dir-flume-hdfs.conf
a3.sources = r3 a3.sinks = k3 a3.channels = c3 # Describe/configure the source a3.sources.r3.type = spooldir a3.sources.r3.spoolDir = /opt/module/apache-flume-1.9.0/upload a3.sources.r3.fileSuffix = .COMPLETED a3.sources.r3.fileHeader = true #忽略所有以.tmp 结尾的文件,不上传 a3.sources.r3.ignorePattern = ([^ ]*\.tmp) # Describe the sink a3.sinks.k3.type = hdfs a3.sinks.k3.hdfs.path = hdfs://hadoop101:8020/flume/upload/%Y%m%d/%H #上传文件的前缀 a3.sinks.k3.hdfs.filePrefix = upload- #是否按照时间滚动文件夹 a3.sinks.k3.hdfs.round = true #多少时间单位创建一个新的文件夹 a3.sinks.k3.hdfs.roundValue = 1 #重新定义时间单位 a3.sinks.k3.hdfs.roundUnit = hour #是否使用本地时间戳 a3.sinks.k3.hdfs.useLocalTimeStamp = true #积攒多少个 Event 才 flush 到 HDFS 一次 a3.sinks.k3.hdfs.batchSize = 100 #设置文件类型,可支持压缩 a3.sinks.k3.hdfs.fileType = DataStream #多久生成一个新的文件 a3.sinks.k3.hdfs.rollInterval = 60 #设置每个文件的滚动大小大概是 128M a3.sinks.k3.hdfs.rollSize = 134217700 #文件的滚动与 Event 数量无关 a3.sinks.k3.hdfs.rollCount = 0 # Use a channel which buffers events in memory a3.channels.c3.type = memory a3.channels.c3.capacity = 1000 a3.channels.c3.transactionCapacity = 100 # Bind the source and sink to the channel a3.sources.r3.channels = c3 a3.sinks.k3.channel = c3
④启动hadoop集群
⑤创建upload监控目录
⑥启动目录监控任务
bin/flume-ng agent -c conf/ -n a3 -f job/job-dir-flume-hdfs.conf -Dflume.root.logger=INFO,console
⑦在upload中上传文件
⑧查看hdfs中是否上传成功
⑨存在的问题
- 相同文件名的文件不能重复上传,只能上传一次,修改了也不会再次上传
- 忽略的文件和配置后缀.COMPLETED的文件不能重复上传
- Spooldir Source 适合用于同步新文件,但不适合对实时追加日志的文件进行监听并同步
- 实时监控目录下的多个追加文件
①案例需求
- 使用Flume监听整个目录的实时追加文件,并上传至HDFS
- 使用Taildir Source适合用于监听多个实时追加的文件,并且能够实现断点续传
②需求分析
③在job目录下创建监听目录数据的配置文件:job-taildir-flume-hdfs.conf
a4.sources = r4 a4.sinks = k4 a4.channels = c4 # Describe/configure the source a4.sources.r4.type = TAILDIR a4.sources.r4.positionFile = /opt/module/apache-flume-1.9.0/tail_dir.json a4.sources.r4.filegroups = f1 f2 a4.sources.r4.filegroups.f1 = /opt/module/apache-flume-1.9.0/files/.*file.* a4.sources.r4.filegroups.f2 = /opt/module/apache-flume-1.9.0/files2/.*log.* # Describe the sink a4.sinks.k4.type = hdfs a4.sinks.k4.hdfs.path = hdfs://hadoop101:8020/flume/upload2/%Y%m%d/%H #上传文件的前缀 a4.sinks.k4.hdfs.filePrefix = upload- #是否按照时间滚动文件夹 a4.sinks.k4.hdfs.round = true #多少时间单位创建一个新的文件夹 a4.sinks.k4.hdfs.roundValue = 1 #重新定义时间单位 a4.sinks.k4.hdfs.roundUnit = hour #是否使用本地时间戳 a4.sinks.k4.hdfs.useLocalTimeStamp = true #积攒多少个 Event 才 flush 到 HDFS 一次 a4.sinks.k4.hdfs.batchSize = 100 #设置文件类型,可支持压缩 a4.sinks.k4.hdfs.fileType = DataStream #多久生成一个新的文件 a4.sinks.k4.hdfs.rollInterval = 60 #设置每个文件的滚动大小大概是 128M a4.sinks.k4.hdfs.rollSize = 134217700 #文件的滚动与 Event 数量无关 a4.sinks.k4.hdfs.rollCount = 0 # Use a channel which buffers events in memory a4.channels.c4.type = memory a4.channels.c4.capacity = 1000 a4.channels.c4.transactionCapacity = 100 # Bind the source and sink to the channel a4.sources.r4.channels = c4 a4.sinks.k4.channel = c4
④启动hadoop集群
⑤创建监控目录文件files和files2
⑥启动flume监控
bin/flume-ng agent -c conf/ -n a4 -f job/job-taildir-flume-hdfs.conf -Dflume.root.logger=INFO,console
⑦往files和files2目录中的文件写数据
⑧在hdfs中查看数据
结语
关于Flume数据采集的基本案例实战到这里就结束了,我们下期见。。。。。。
相关文章:
(二十)大数据实战——Flume数据采集的基本案例实战
前言 本节内容我们主要介绍几个Flume数据采集的基本案例,包括监控端口数据、实时监控单个追加文件、实时监控目录下多个新文件、实时监控目录下的多个追加文件等案例。完成flume数据监控的基本使用。 正文 监控端口数据 ①需求说明 - 使用 Flume 监听一个端口&am…...
AutoCAD图如何保存为Word
AutoCAD图如何保存为Word 引言AutoCAD图保存为Word文件步骤: 引言 不知道大家有没有是否遇到需要将AutoCAD图保存到Word中。有些小伙伴可能直接截图插入Word中,这种方法简单,但对于有高清图片需求的小伙伴就不适用了。接下来我就为大家介绍一…...
Java线程 - 详解(2)
一,线程安全问题 有些代码在单个线程的环境下运行,完全正确,但是同样的代码,让多个线程去执行,此时就可能出现BUG,这就是所谓的 "线程安全问题"。举一个例子: public class Demo {s…...
事务特性 - 达梦数据库
达梦数据库事务特性 1 事务特性1.1 原子性1.2 一致性1.3 隔离性1.4 持久性 1 事务特性 事务必须具备什么属性才是一个有效的事务呢?一个逻辑工作单元必须表现出四种属性,即原子性、一致性、隔离性和持久性,这样才能成为一个有效的事务。DM 数…...
axios 使用FormData格式发送GET请求
如果你需要使用,FormData格式,发送GET请求 将参数拼接到 FormData对象 中,使用 URLSearchParams 将FormData对象转换为查询参数字符串,并将其拼接到URL中,这样就能以FormData格式发送GET请求给服务器 注意࿱…...
CS144(2023 Spring)Lab 1: stitching substrings into a byte stream
文章目录 前言其他笔记相关链接 1. Getting started2. Putting substrings in sequence2.1 需求分析2.2 注意事项2.3 代码实现 3. 测试与优化 前言 这一个Lab主要是实现一个TCP receiver的字符串接收重组部分。 其他笔记 Lab 0: networking warmup Lab 1: stitching substri…...
【PHP】常用的PHP内置函数
1、PHP内置函数非常丰富,用于执行各种任务。以下是一些常用的PHP内置函数: 字符串操作函数: strlen(): 返回字符串的长度。 strpos(): 查找字符串中的某个子串第一次出现的位置。 substr(): 返回字符串的子串。 str_replace(): 替换字符串中的…...
css自学框架之消息弹框
首先我们还是看看消息弹框效果: 主要实现代码分为三部分 一、CSS部分,这部分主要是定义样式,也就是我们看到的外表,主要代码: /* - 弹窗 */notice{top: 0;left: 0;right: 0;z-index: 10;padding: 1em;position: fix…...
42、Flink 的table api与sql之Hive Catalog
Flink 系列文章 1、Flink 部署、概念介绍、source、transformation、sink使用示例、四大基石介绍和示例等系列综合文章链接 13、Flink 的table api与sql的基本概念、通用api介绍及入门示例 14、Flink 的table api与sql之数据类型: 内置数据类型以及它们的属性 15、Flink 的ta…...
PAT 1145 Hashing - Average Search Time
个人学习记录,代码难免不尽人意。 The task of this problem is simple: insert a sequence of distinct positive integers into a hash table first. Then try to find another sequence of integer keys from the table and output the average search time (the…...
C++调用Python Win10 Miniconda虚拟环境配置
目录 前言1. Win10 安装 Miniconda2. 创建虚拟环境3. 配置C调用python环境4. C调用Python带参函数5.遇到的问题6. 总结 前言 本文记录了Win10 系统下Qt 应用程序调用Python时配置Miniconda虚拟环境的过程及遇到的问题,通过配置Python虚拟环境,简化了Qt应…...
从0到1学会Git(第一部分):Git的下载和初始化配置
1.Git是什么: 首先我们看一下百度百科的介绍:Git(读音为/gɪt/)是一个开源的分布式版本控制系统,可以有效、高速地处理从很小到非常大的项目版本管理。 也是Linus Torvalds为了帮助管理Linux内核开发而开发的一个开放源码的版本控制软件。 …...
【记录】手机QQ和电脑QQ里的emoji种类有什么差异?
版本 手机 QQ:V 8.9.76.12115 电脑 QQ:QQ9.7.15(29157) 偶然发现,有一种emoji手机上怎么找都找不到,一开始以为自己失忆了,后来发现这种emoji只在电脑上有。 接下来简单说一下找emoji差异的方式…...
blender界面认识01
学习视频 【基础篇】1.2 让手听话_哔哩哔哩_bilibili 目录 控制视角 控制物体 选择对象1 小结 控制视角 长按鼠标中键-----视角旋转 shift鼠标中键-----视角平移 滚动鼠标中键-----视角缩放 也可以通过界面的快捷工具实现 这个视角旋转有一点像catia中罗盘,…...
TCP数据报结构分析(面试重点)
在传输层中有UDP和TCP两个重要的协议,下面将针对TCP数据报的结构进行分析 关于UDP数据报的结构分析推荐看UDP数据报结构分析(面试重点) TCP结构图示 TCP报头结构的分析 一.16位源端口号 源端口表示发送数据时,发送方的端口号&am…...
合并两个有序的单链表,合并之后的链表依然有序
定义节点 class ListNode {var next: ListNode _var x: Int _def this(x: Int) {thisthis.x x}override def toString: String s"x>$x" } 定义方法 class LinkedList {var head new ListNode(0)def getHead(): ListNode this.headdef add(listNode: Li…...
eureka迁移到nacos--双服务中心注册
服务注册中心的迁移有多种方式,官网使用nacos sync,还有民间开发的双注册中心组件eureka-nacos-proxy,但是我用了不太顺利,所以用的是阿里巴巴的双注册中心组件edas-sc-migration-starter spring boot:2.5.3 引入依赖 …...
线程池使用不规范导致线程数大以及@Async的规范使用
文章详细内容来自:线程数突增!领导:谁再这么写就滚蛋! 下面是看完后文章的,一个总结 线程池的使用不规范,导致程序中线程数不下降,线程数量大。 临时变量的接口,通过下面简单的线…...
启莱OA treelist.aspx SQL注入
子曰:“为政以德,譬如北辰,居其所,而众星共之。” 漏洞复现 访问漏洞url: 使用SQLmap对参数 user 进行注入 漏洞证明: 文笔生疏,措辞浅薄,望各位大佬不吝赐教,万分感…...
ES是一个分布式全文检索框架,隐藏了复杂的处理机制,核心数据分片机制、集群发现、分片负载均衡请求路由
ES是一个分布式框架,隐藏了复杂的处理机制,核心数据分片机制、集群发现、分片负载均衡请求路由。 ES的高可用架构,总体如下图: 说明:本文会以pdf格式持续更新,更多最新尼恩3高pdf笔记,请从下面…...
地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...
Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...
【网络安全产品大调研系列】2. 体验漏洞扫描
前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...
VTK如何让部分单位不可见
最近遇到一个需求,需要让一个vtkDataSet中的部分单元不可见,查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行,是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示,主要是最后一个参数,透明度…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
前端开发面试题总结-JavaScript篇(一)
文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包(Closure)?闭包有什么应用场景和潜在问题?2.解释 JavaScript 的作用域链(Scope Chain) 二、原型与继承3.原型链是什么?如何实现继承&a…...
安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...
音视频——I2S 协议详解
I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议,专门用于在数字音频设备之间传输数字音频数据。它由飞利浦(Philips)公司开发,以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...
腾讯云V3签名
想要接入腾讯云的Api,必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口,但总是卡在签名这一步,最后放弃选择SDK,这次终于自己代码实现。 可能腾讯云翻新了接口文档,现在阅读起来,清晰了很多&…...



























