当前位置: 首页 > news >正文

第十三届蓝桥杯省赛 C++ A 组 F 题、Java A 组 G题、C组 H 题、Python C 组 I 题——青蛙过河(AC)

目录

  • 1.青蛙过河
    • 1.题目描述
    • 2.输入格式
    • 3.输出格式
    • 4.样例输入
    • 5.样例输出
    • 6.数据范围
    • 7.原题链接
    • 2.解题思路
  • Ac_code
    • 1.C++
    • 2.Java

1.青蛙过河

1.题目描述

小青蛙住在一条河边, 它想到河对岸的学校去学习。小青蛙打算经过河里 的石头跳到对岸。

河里的石头排成了一条直线, 小青蛙每次跳跃必须落在一块石头或者岸上。 不过, 每块石头有一个高度, 每次小青蛙从一块石头起跳, 这块石头的高度就 会下降 1 , 当石头的高度下降到 0 时小青蛙不能再跳到这块石头上(某次跳跃 后使石头高度下降到 0 是允许的)。

小青蛙一共需要去学校上 xxx 天课, 所以它需要往返 2x2x2x 次。当小青蛙具有 一个跳跃能力 yyy 时, 它能跳不超过 yyy 的距离。

请问小青蛙的跳跃能力至少是多少才能用这些石头上完 xxx 次课。

2.输入格式

输入的第一行包含两个整数 n,xn,xn,x, 分别表示河的宽度和小青蛙需要去学校 的天数。请注意 2x2x2x 才是实际过河的次数。
第二行包含 n−1n−1n1 个非负整数 H1,H2,⋯,Hn−1H_1,H_2,⋯,H_{n-1}H1,H2,,Hn1, 其中 Hi>0H_i>0Hi>0表 示在河中与 小青蛙的家相距 iii 的地方有一块高度为 HiH_iHi ​的石头,
Hi=0H_i =0Hi=0 表示这个位置没有石头。

3.输出格式

输出一行, 包含一个整数, 表示小青蛙需要的最低跳跃能力。

4.样例输入

5 1
1 0 1 0

5.样例输出

4

6.数据范围

1≤n≤105,1≤x≤109,1≤Hi≤104。1≤n≤10^5 ,1≤x≤10^9,1≤H i ≤10^ 4 。1n105,1x109,1Hi104

7.原题链接

青蛙过河

2.解题思路

假设青蛙可以按照某条路线SSS从家跳往对岸,路线SSS上所有的石子高度均减1,这个操作等价于“青蛙从对岸按照路线SSS反向跳回家,路线SSS上所有的石子高度均减1”。

这也说明,判断小青蛙能否往返2x2x2x次,等价于判断小青蛙能否从左往右跳重复2x2x2x

由题目可以发现,设小青蛙的跳跃能力为yyy,当小青蛙跳跃能力yyy越大,越容易满足“重复2x次”的约束,即求解的yyy存在单调性:

  • yyy越大时,小青蛙每次可以跳的范围更大,可以跳更少的步数到达对岸,即更容易重复2x2x2x次,当y=ny=ny=n时,无需经过任何石子就可以跳到对岸。
  • yyy越小时,小青蛙需要使用更多的步数才能到达对岸,更不容易满足“重复2x2x2x次”的约束。

本题最终需要求解的是:恰好满足约束的最小的yyy 答案存在单调性,显然可以用二分答案的算法进行求解,初始区间[l,r]=[1,n][l,r]=[1,n][l,r]=[1,n]

  1. 求出区间[l,r][l,r][l,r]的中点midmidmidmid=(l+r)//2mid=(l+r)//2mid=(l+r)//2
  2. 判断当小青蛙跳跃能力等于midmidmid时,能否从左往右跳重复2x2x2x
    1. 如果可以,则更新ans=midans=midans=mid,调整搜索区间为[l,mid−1][l,mid-1][l,mid1](求最小值,因此调整右端点)
    2. 否则,调整搜索区间为[mid+1,r][mid+1,r][mid+1,r]
  3. 如果l>rl > rl>r,终止循环,否则回到111

二分答案将求解最值问题转换成判定性问题,问题转变成当跳跃能力等于yyy时,判断小青蛙能否从左往右跳2x2x2x次。

小青蛙最开始位于0处,跳跃能力等于yyy,需要重复跳跃2x2x2x次,则首先要求从1−y1-y1y的石子高度必须大于等于2x2x2x,不然小青蛙迈出的第一步都无法重复2x2x2x次。

这个结论可以推广——“所有长度为yyy的区间中石子高度之和必须大于等于2x2x2x”。

  1. 如果所有长度为yyy的区间中石子高度之和等于2x:2x:2x:则存在Hi=Hi+yH_i=H_{i+y}Hi=Hi+y,则只要保证第一步在[1,y][1,y][1,y]中选择一个可以跳跃的石子iii,则后续跳跃只需从当前位置iii跳到i+yi+yi+y即可。这样可以保证重复2x2x2x次;
  2. 如果所有长度为yyy的区间中,石子高度之和大于2x2x2x:**则可以考虑去除某些石子的高度,从而构造出情况1,此时也是可以保证重复2x2x2x次的;
  3. 如果可以重复跳跃2x2x2x次,所有区间长度为yyy的区间中石子高度之和大于等于2x2x2x:对于任意区间[i,i+y][i,i+y][i,i+y],每次跳跃必须在区间中落脚。利用反证法,如果不在区间[i,i+y][i,i+y][i,i+y]中落脚,等价于从iii的左边跳到了i+yi+yi+y的右边,此时跳跃长度超过了能力上限yyy,因此不合法。也就是说,每次跳跃对于任意长度等于yyy的区间都落脚1次,重复2x2x2x次则说明该区间石子之和大于等于2x2x2x

通过上面三点可以证明:“当跳跃能力等于yyy时重复2x2x2x次”等价于“所有区间长度等于yyy的区间石子高度之和大于等于2x2x2x”,利用这个结论进行二分答案的判定即可。

实现过程中事先预处理前缀和,从而可以O(1)​O(1)​O(1)求解区间和,时间复杂度O(nlog⁡n)​O(n\log n)​O(nlogn)

实际上使用双指针,维护区间和始终大于 2x2x2x,得到的最小区间长度则是答案,这样可做到 O(n)O(n)O(n) 的复杂度。

Ac_code

1.C++

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef unsigned long long uLL;
typedef pair<int, int> PII;
#define pb(s) push_back(s);
#define SZ(s) ((int)s.size());
#define ms(s,x) memset(s, x, sizeof(s))
#define all(s) s.begin(),s.end()
const int inf = 0x3f3f3f3f;
const int mod = 1000000007;
const int N = 200010;LL n, x;
void solve()
{cin >> n >> x;std::vector<LL> s(n + 1);for (int i = 1; i < n; ++i) {cin >> s[i];s[i] += s[i - 1];}//最后一块石头,也就是终点,可以无限跳s[n] = 1e18;int l = 1, r = n;auto check = [&](int g) {for (int i = 0; i + g <= n; ++i) {int r = i + g;if (s[r] - s[i] < 2 * x) return false;}return true;};while (l < r) {int mid = l + r  >> 1;if (check(mid)) r = mid;else l = mid + 1;}cout << r << '\n';
}
int main()
{ios_base :: sync_with_stdio(false);cin.tie(0); cout.tie(0);int t = 1;while (t--){solve();}return 0;
}

2.Java

import java.util.Scanner;public class Main {public static void main(String[] args) {Scanner sc=new Scanner(System.in);int n=sc.nextInt();long x=sc.nextLong();long []arr=new long[n+1];for (int i=1;i<n;i++){arr[i]=sc.nextLong()+arr[i-1];}arr[n]=100000000000L;int l=0;int ans=0;for (int r=1;r<=n;r++){if (arr[r]-arr[l]>= 2*x){ans=Math.max(ans,r-l);l+=1;}}System.out.println(ans);}
}

相关文章:

第十三届蓝桥杯省赛 C++ A 组 F 题、Java A 组 G题、C组 H 题、Python C 组 I 题——青蛙过河(AC)

目录1.青蛙过河1.题目描述2.输入格式3.输出格式4.样例输入5.样例输出6.数据范围7.原题链接2.解题思路Ac_code1.C2.Java1.青蛙过河 1.题目描述 小青蛙住在一条河边, 它想到河对岸的学校去学习。小青蛙打算经过河里 的石头跳到对岸。 河里的石头排成了一条直线, 小青蛙每次跳跃…...

django项目实战四(django+bootstrap实现增删改查)进阶时间控件

接上一篇《django项目实战三&#xff08;djangobootstrap实现增删改查&#xff09;进阶分页》 知识点&#xff1a; 使用bootstrap-datepicker实现时间控件 一、优化layout.html模版 主要新增2个块 {% block css %}{% endblock %}{% block js %}{% endblock %} {% load static…...

Jetpack之ViewModel

The ViewModel class is a business logic or screen level state holder. 上面是官方给的定义&#xff0c;ViewModel 类是业务逻辑或屏幕级状态持有者。 一、业务逻辑持有者 在此之前&#xff0c;无论是MVC模式&#xff0c;还是MVP模式&#xff0c;在视图层&#xff0c;都会…...

追梦之旅【数据结构篇】——详解C语言动态实现顺序表

详解C语言动态实现顺序表~&#x1f60e;前言&#x1f64c;顺序表概念及结构&#x1f64c;功能函数的具体实现分析&#xff1a;&#x1f64c;尾插函数具体实现&#xff1a;尾删函数具体实现&#xff1a;头插函数具体实现&#xff1a;头删插函数具体实现&#xff1a;任意插函数具…...

xss基础

目录标题一、XSS的原理二、XSS漏洞分类1、反射型xss2、存储型XSS3、基于DOM的XSS三、XSS漏洞的危害及验证四、XSS漏洞的黑盒测试五、XSS漏洞的白盒测试一、XSS的原理 跨站脚本攻击XSS&#xff08;Cross Site Scripting&#xff09;&#xff0c;为了不和层叠样式表&#xff08;…...

移动WEB开发二、流式布局

零、文章目录 文章地址 个人博客-CSDN地址&#xff1a;https://blog.csdn.net/liyou123456789个人博客-GiteePages&#xff1a;https://bluecusliyou.gitee.io/techlearn 代码仓库地址 Gitee&#xff1a;https://gitee.com/bluecusliyou/TechLearnGithub&#xff1a;https:…...

分享在线预约系统制作步骤_在线预约链接怎么做

在微信小程序上进行在线预约&#xff0c;不管是商家还是顾客&#xff0c;都可以自由选择时间&#xff0c;顾客还可以通过预约小程序&#xff0c;了解到所选服务的详情和功能特色&#xff0c;不必等到去店内听介绍&#xff0c;顾客能节省等候时间&#xff0c;商家能解放招待人力…...

【每日一题Day125】LC1326灌溉花园的最少水龙头数目 | 动态规划 贪心

灌溉花园的最少水龙头数目【LC1326】 在 x 轴上有一个一维的花园。花园长度为 n&#xff0c;从点 0 开始&#xff0c;到点 n 结束。 花园里总共有 n 1 个水龙头&#xff0c;分别位于 [0, 1, ..., n] 。 给你一个整数 n 和一个长度为 n 1 的整数数组 ranges &#xff0c;其中 …...

C# FFmpeg推流Vlc.DotNet拉流优化参数

FFmpeg是流媒体开源神器&#xff0c;视频转换、剪裁包括推流&#xff0c;无所不能&#xff0c;很多系统都是基于其开发的。拉流可以用FFplay&#xff0c;但是不利于集成到自己的代码中&#xff0c;因此拉流选择了Vlc.DotNet。 在使用中&#xff0c;仅使用默认参数&#xff0c;…...

pnpm v8版本升级变化关注点(前瞻速攻版)

前言 pnpm v8.0.0-alpha.0 版本已经发布&#xff0c;包含少量变化&#xff0c;但其中还是有令人在意的点的。 本文将默认读者拥有大部分 pnpm v7 版本的知识储备&#xff0c;进行 v8 版本的前瞻速攻。 安装方法 目前通过指定 Tag 方式可以安装 v8 alpha 版&#xff1a; npm…...

Python基础-环境安装

Python安装1.下载PythonPython网址&#xff1a;https://www.python.org/进入Python官网&#xff0c;点击Downloads&#xff0c;选择自己对应的操作系统&#xff08;此处以Windows为例&#xff09;在左侧的稳定发行版中&#xff0c;选择一个3.5版本以上的&#xff0c;然后点击对…...

重载、重写、重构概念辨析

首先&#xff0c;重载、重写、重构都表现为方法名相同 重载 重载&#xff08;overload&#xff09;&#xff0c;表示同一类的方法之间的关系&#xff0c;至少有以下其中一种情况 参数个数不同参数类型不同参数顺序不同 注意&#xff0c;返回值类型不同不能作为重载依据 重…...

第九章 - 多表查询(join,left join 等)与合并查询(union union all)

第九章 - 多表查询&#xff08;join&#xff0c;left join 等&#xff09;与合并查询&#xff08;union&#xff09;交叉链接&#xff08;笛卡尔积&#xff09;内连接查询外连接查询左链接&#xff1a; left join右链接&#xff1a;right join组合查询 union & union all使…...

matplotlib学习笔记(持续更新中…)

目录 1. 安装&#xff0c;导入 2. figure&#xff0c;axes&#xff08;图形&#xff0c;坐标图形&#xff09; 2.1 figure对象 2.2 axes对象 2.3 代码演示 2.3 subplot() 方法 3. 图表的导出 3.1 savefig() 方法 3.2 代码演示 1. 安装&#xff0c;导入 pip install m…...

STM32 SystemInit()函数学习总结

拿到程序后如何看系统时钟&#xff1f;User文件夹——system_stm32f4xx程序&#xff0c;先找systemcoreclock(系统时钟&#xff09;但是这里这么多个系统时钟应该如何选择?点击魔法棒&#xff0c;然后点击C/C可以看到define的是F40_41XXX.USE这一款 &#xff0c;对应着就找出了…...

【Spring Boot 原理分析】- 自动配置

【Spring Boot 原理分析】- 自动配置 Condition 注解 Condition 是 Spring 4.0 增加的条件判断功能&#xff0c;通过这个功能可以实现选择的创建 Bean 操作 &#x1f451; 我们在使用 Spring 的时候&#xff0c;只需导入某个依赖的坐标&#xff0c;就可以直接通过 Autwired 注…...

简明易懂的JVM理解

文章目录简明易懂的JVM和GC理解写在前面Java虚拟机(JVM)的组成基本介绍结构类加载子系统(ClassLoader SubSystem)介绍类加载过程类加载过程小结双亲委派模型(Parent-Delegation Model)简介优点Java9的类加载的委派关系变动双亲委派模型小结运行时数据区(Runtime Data Areas)介绍…...

新考纲下的PMP考试有多难?

PMP考试在6月25号考试结束后&#xff0c;在网上引起一片哗然&#xff0c;新考纲领域与考点的转变使得考试难度加大&#xff1a;PMP考试敏捷和混合内容比重大&#xff0c;考试难度加大很多&#xff1b;考题更加注重考生的知识应用能力&#xff0c;领域更宽&#xff1b; 接下来我…...

朗润国际期货:知名投行/大佬打Call记

知名投行/大佬打Call记 2023年知名投行/大佬看好哪些投资标的 中国股市 高盛&#xff08;2023年1月&#xff09;&#xff1a;将上涨15% 花旗&#xff08;2023年1月&#xff09;&#xff1a;上半年会成为投资两点 摩根大通&#xff08;2022年11月&#xff09;&#xff1a;M…...

遗传算法及Python实现

0 建议学时 4学时 1 人工智能概述 2020中国人工智能产业年会在苏州召开&#xff0c;会上发布的《中国人工智能发展报告2020》显示&#xff0c;过去十年(2011-2020) &#xff0c;中国人工智能专利申请量达389571件&#xff0c;占全球总量的74.7%&#xff0c;位居世界第一。 报…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

线程同步:确保多线程程序的安全与高效!

全文目录&#xff1a; 开篇语前序前言第一部分&#xff1a;线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分&#xff1a;synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

Axure 下拉框联动

实现选省、选完省之后选对应省份下的市区...

rknn toolkit2搭建和推理

安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 &#xff0c;不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源&#xff08;最常用&#xff09; conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...

基于开源AI智能名片链动2 + 1模式S2B2C商城小程序的沉浸式体验营销研究

摘要&#xff1a;在消费市场竞争日益激烈的当下&#xff0c;传统体验营销方式存在诸多局限。本文聚焦开源AI智能名片链动2 1模式S2B2C商城小程序&#xff0c;探讨其在沉浸式体验营销中的应用。通过对比传统品鉴、工厂参观等初级体验方式&#xff0c;分析沉浸式体验的优势与价值…...

[拓扑优化] 1.概述

常见的拓扑优化方法有&#xff1a;均匀化法、变密度法、渐进结构优化法、水平集法、移动可变形组件法等。 常见的数值计算方法有&#xff1a;有限元法、有限差分法、边界元法、离散元法、无网格法、扩展有限元法、等几何分析等。 将上述数值计算方法与拓扑优化方法结合&#…...

CVE-2023-25194源码分析与漏洞复现(Kafka JNDI注入)

漏洞概述 漏洞名称&#xff1a;Apache Kafka Connect JNDI注入导致的远程代码执行漏洞 CVE编号&#xff1a;CVE-2023-25194 CVSS评分&#xff1a;8.8 影响版本&#xff1a;Apache Kafka 2.3.0 - 3.3.2 修复版本&#xff1a;≥ 3.4.0 漏洞类型&#xff1a;反序列化导致的远程代…...