Python 操作 MongoDB 数据库介绍
MongoDB 是一款面向文档型的 NoSQL
数据库,是一个基于分布式文件存储的开源的非关系型数据库系统,其内容是以 K/V
形式存储,结构不固定,它的字段值可以包含其他文档、数组和文档数组等。其采用的 BSON
(二进制 JSON )的数据结构,可以提高存储和扫描效率,但空间开销会有些大。今天就为大家简单介绍下在 Python 中使用 MongoDB 。
安装 PyMongo 库
在 Python 中操作 MongoDB ,需要使用 PyMongo
库,执行如下命令安装:
pip3 install pymongo
连接 MongoDB 数据库
连接时需要使用 PyMongo 库里面的 MongoClient 模块,有两种方式可以创建连接,默认只需要传入IP和端口号即可。如果数据库存在账号密码,则需要指定连接的数据库,并进行鉴权才能连接成功。
#导入 MongoClient 模块
from pymongo import MongoClient, ASCENDING, DESCENDING
# 两种方式
#1. 传入数据库IP和端口号
mc = MongoClient('127.0.0.1', 27017)
#2. 直接传入连接字串
mc = MongoClient('mongodb://127.0.0.1:27017')
# 有密码的连接
# 首先指定连接testdb数据库
db = mc.testdb
# 通过authenticate方法认证账号密码
db.authenticate('username','password')
# 检查是否连接成功,输出以下结果表示连接成功
print(mc.server_info())
# {'version': '4.2.1', 'gitVersion': 'edf6d45851c0b9ee15548f0f847df141764a317e', 'modules': [], 'allocator': 'tcmalloc', 'javascriptEngine': 'mozjs', 'sysInfo': 'deprecated', 'versionArray': [4, 2, 1, 0], 'openssl': {'running': 'OpenSSL 1.1.1 11 Sep 2018', 'compiled': 'OpenSSL 1.1.1 11 Sep 2018'}, ……省略 , 'ok': 1.0}
MongoDB 数据库操作
成功连接数据库,接下来我们开始介绍通过 MongoClient 模块如何对 mongoDB 数据库进行 CURD
的操作。
获取数据库和集合
首先要指定需要操作的数据库和集合,这里的数据库可以对应为 Mysql
的 DataBase
,集合对应为 Mysql
的 Table
。需要注意的是在 mongoDB 中,不需要提前创建数据库和集合,在你操作它们时如果没有则会自动创建,但都是延时创建的,在添加 Document
时才会真正创建。
# 指定操作数据库的两种方式
#1. 获取 testdb 数据库,没有则自动创建
db = mc.testdb
#2. 效果与上面 db = mc.testdb 相同
db = mc['testdb']
# 打印出testdb数据库下所有集合(表)
print(db.collection_names())
# 指定操作集合的两种方式
#1. 获取 test 集合,没有则自动创建
collection = db.test
#2. 效果与 collection = db.test 相同
collection = db['test']
# 打印集合中一行数据
print(collection.find_one())
数据的插入操作
在 MongoDB 中,每条数据其实都有一个 _id
属性作为唯一标识。如果没有显式指明该属性,MongoDB 会自动产生一个 ObjectId
类型的 _id
属性,insert()
方法会在执行后返回 _id
值。不过在 PyMongo 3.x 版本中,官方已经不推荐使用 insert()
方法,而是推荐使用insert_one()
和 insert_many()
方法来分别插入单条记录和多条记录。
# 要插入到集合中的对象
book = {
'name' : 'Python基础',
'author' : '张三',
'page' : 80
}
# 向集合中插入一条记录
collection.insert_one(book)
# 返回结果:{'_id': ObjectId('5de4c7b90ae08431839ac2a7'), 'name': 'Python基础', 'author': '张三', 'page': 80}
# 对于insert_many()方法,我们可以将数据以列表形式传递参数
book1 = {
'name' : 'Java基础',
'author' : '李白',
'page' : 100
}
book2 = {
'name' : 'Java虚拟机',
'author' : '王五',
'page' : 100
}
# 创建 book_list 列表
book_list = [book1, book2]
# 向集合中插入多条记录
collection.insert_many(book_list)
# 返回结果:<pymongo.results.InsertManyResult object at 0x7f80a39fa408>
数据的查询操作
查询需要使用 find_one()
或 find()
方法,其中 find_one()
查询得到的是单个结果,即一条记录,find()
则返回一个生成器对象。下面我们就来查询上面刚插入的数据,如果查询不到数据则返回 None
,代码如下:
# 通过条件查询一条记录,如果不存在则返回None
res = collection.find_one({'author': '张三'})
print (res)
# 打印结果:{'_id': ObjectId('5de4c7b90ae08431839ac2a7'), 'name': 'Python基础', 'author': '张三', 'page': 80}
# 通过条件查询多条记录,如果不存在则返回None
res = collection.find({'page': 100})
print (res)
#打印结果:<pymongo.cursor.Cursor object at 0x7f80a39daa58>
# 使用 find() 查询会返回一个对象
# 遍历对象,并打印查询结果
for r in res:
print(r)
#打印结果:
# {'_id': ObjectId('5de4c8ae0ae08431839ac2a8'), 'name': 'Java基础', 'author': '李白', 'page': 100}
# {'_id': ObjectId('5de4c8ae0ae08431839ac2a9'), 'name': 'Java虚拟机', 'author': '王五', 'page': 100}
# 查询page大于50的记录
res = collection.find({'page': {'$gt': 50}})
# 通过遍历返回对象,结果如下:
# {'_id': ObjectId('5de4c7b90ae08431839ac2a7'), 'name': 'Python基础', 'author': '张三', 'page': 80}
# {'_id': ObjectId('5de4c8ae0ae08431839ac2a8'), 'name': 'Java基础', 'author': '李白', 'page': 100}
# {'_id': ObjectId('5de4c8ae0ae08431839ac2a9'), 'name': 'Java虚拟机', 'author': '王五', 'page': 100}
上面查询条件中我们用到了 $gt
的比较运算符,关于查询条件中的比较运算符和功能运算符对照表如下:
符号 | 含义 | 举例 |
---|---|---|
$gt | 大于 | {'page': {'$gt': 50} |
$lt | 小于 | |
$lte | 小于等于 | |
$gte | 大于等于 | |
$ne | 不等于 | |
$in | 在范围内 | {'page': {'$in': [50, 100]}} |
$nin | 不在范围内 | {'page': {'$nin': [50, 100]}} |
$regex | 匹配正则表达式 | {'name': {'$regex': '^张.*'}} |
$exists | 属性是否存在 | {'name': {'$exists': True}} |
$type | 类型判断 | {'name': {'$type': 'string'}} |
$mod | 数字模操作 | {'page': {'$mod': [80, 10]}} |
$text | 文本查询 | {'$text': {'$search': 'Java'}} |
$where | 高级条件查询 | {'$where': 'obj. author == obj. full_name'} |
数据的更新操作
更新操作和插入操作类似,PyMongo
提供了两种更新方法,即 update_one()
和 update_many()
方法,其中 update_one()
方法只会更新满足条件的第一条记录。
注意:
如果使用 $set,则只更新 book 对象内存在的字段,如果更新前还有其他字段,则不更新也不删除。
如果不使用 $set,则会把更新前的数据全部用 book 对象替换,如果原本存在其他字段则会被删除。
# 查询一条记录
book = collection.find_one({'author': '张三'})
book['page'] = 90
# 更新满足条件{'author', '张三'}的第一条记录
res = collection.update_one({'author': '张三'}, {'$set': book})
# 更新返回结果是一个对象,我们可以调用matched_count和modified_count属性分别获得匹配的数据条数和影响的数据条数。
print(res.matched_count, res.modified_count)
#打印结果:1 1
# 更新满足条件 page>90 的所有记录,page 字段自加 10
res = collection.update_many({'page': {'$gt': 90}}, {'$inc': {'page': 10}})
# 打印更新匹配和影响的记录数
print(res.matched_count, res.modified_count)
#打印结果:2 2
book3 = {'name':'Python高级', 'author':'赵飞', 'page': 50}
#upsert=True表示如果没有满足更新条件的记录,则会将book3插入集合中
res = collection.update_one({'author': '赵飞'}, {'$set': book3}, upsert=True)
print(res.matched_count, res.modified_count)
#打印结果:0 0
# 查询所有记录,并遍历打印出来
res = collection.find()
for r in res:
print(r)
#打印结果:
# {'_id': ObjectId('5de4c7b90ae08431839ac2a7'), 'name': 'Python基础', 'author': '张三', 'page': 90}
# {'_id': ObjectId('5de4c8ae0ae08431839ac2a8'), 'name': 'Java基础', 'author': '李白', 'page': 110}
# {'_id': ObjectId('5de4c8ae0ae08431839ac2a9'), 'name': 'Java虚拟机', 'author': '王五', 'page': 110}
# {'_id': ObjectId('5de4d76f71aa089d58170a92'), 'author': '赵飞', 'name': 'Python高级', 'page': 50}
集合的删除操作
删除数据同样推荐使用两个方法 delete_one()
和 delete_many()
,其中 delete_one()
为删除第一条符合条件的记录。具体操作代码如下:
# 删除满足条件的第一条记录
result = collection.delete_one({'author': '张三'})
# 同样可以通过返回对象的 deleted_count 属性查询删除的记录数
print(result.deleted_count)
# 打印结果:1
# 删除满足条件的所有记录,以下为删除 page < 90 的记录
result = collection.delete_many({'page': {'$lt': 90}})
print(result.deleted_count)
# 打印结果:1
其他数据库操作
除了以上标准的数据库操作外,PyMongo
还提供了以下通用且方便的操作方法,比如 limit()
方法用来读取指定数量的数据skip()
方法用来跳过指定数量的数据等,具体请看如下代码:
# 查询返回满足条件的记录然后删除
result = collection.find_one_and_delete({'author': '王五'})
print(result)
# 打印结果:{'_id': ObjectId('5de4c8ae0ae08431839ac2a9'), 'name': 'Java虚拟机', 'author': '王五', 'page': 110}
# 统计查询结果个数
# 全部结果个数
collection.find().count()
# 返回结果:1
# 满足条件结果个数
collection.find({'page': 100}).count()
# 返回结果:0
# 查询结果按字段排序
# 升序
results = collection.find().sort('page', ASCENDING)
# 降序
results = collection.find().sort('page', DESCENDING)
# 下面查询结果是按page升序排序,只返回第二条记录及以后的两条结果
results = collection.find().sort('page', ASCENDING).skip(1).limit(2)
print(results)
注意:在数据量在在千万、亿级别庞大的时候,查询时最好
skip()
的值不要太大,这样很可能导致内存溢出。
数据索引操作
默认情况下,数据插入时已经有一个 _id
索引了,当然我们还可以创建自定义索引。
# unique=True时,创建一个唯一索引,索引字段插入相同值时会自动报错,默认为False
collection.create_index('page', unique= True)
# 打印结果:'page_1'
# 打印出已创建的索引
print(collection.index_information())
# 返回结果:{'_id_': {'v': 2, 'key': [('_id', 1)], 'ns': 'testdb.test'}, 'page_1': {'v': 2, 'unique': True, 'key': [('page', 1)], 'ns': 'testdb.test'}}
# 删除索引
collection.drop_index('page_1')
#删除集合
collection.drop()
总结
本文为大家介绍了 Python 中如何创建连接 MongoDB 数据库,并通过代码的方式展示了对 MongoDB 数据的增删改查以及排序索引等操作,通过以上学习个人感觉操作起来还是比较简单方便的。今天就先介绍到这里,以后还会为大家介绍其他数据库的操作。
相关文章:
Python 操作 MongoDB 数据库介绍
MongoDB 是一款面向文档型的 NoSQL 数据库,是一个基于分布式文件存储的开源的非关系型数据库系统,其内容是以 K/V 形式存储,结构不固定,它的字段值可以包含其他文档、数组和文档数组等。其采用的 BSON(二进制 JSON &am…...
【ES6】Generator 函数
Generator 函数是 ES6 引入的一种新的函数类型,它既可以生成一个序列,又可以在某个条件下停止执行,并在需要时恢复执行。Generator 函数非常适合处理那些需要按需计算的场景,例如处理大数据、生成随机数等。 Generator 函数的基本…...

「操作系统」1. 基础
前言:操作系统基础八股文 文章目录 一 、操作系统基础1.1 什么是操作系统?1.2 什么是系统调用1.3 什么是中断 🚀 作者简介:作为某云服务提供商的后端开发人员,我将在这里与大家简要分享一些实用的开发小技巧。在我的职…...
Docker安装Oracl数据库!
安装Docker 查看是否安装docker: yum list installed | grep docker 安装docker: yum -y install docker 启动docker: systemctl start docker 查看docker启劝状态: systemctl status docker 查看docker版本: docker --version 设置docker开机自启动: systemctl en…...
leecode 数据库:1158. 市场分析 I
数据导入: SQL Schema: Create table If Not Exists Users (user_id int, join_date date, favorite_brand varchar(10)); Create table If Not Exists Orders (order_id int, order_date date, item_id int, buyer_id int, seller_id int); Create tab…...

简单shell脚本的编写
文章目录 简单使用shell脚本参数判断整数的比较运算符字符串的比较运算shell脚本流程控制shell脚本循环for循环批量添加用户批量ping IP地址检测同一局域网,多台主机存活情况检测同一局域网,多台主机存活情况多线程检测主机存活情况 while循环case选择语…...

汽车售后接待vr虚拟仿真实操演练作为岗位培训的重要工具和手段
汽车虚拟仿真教学软件是一种基于虚拟现实技术的教学辅助工具。它能够模拟真实的汽车环境和操作场景,让学生能够通过虚拟仿真来学习和实践汽车相关知识和技能。与传统的教学方式相比,汽车虚拟仿真教学软件具有更高的视觉沉浸感和互动性,能够更…...

登录校验-Filter-登录校验过滤器
目录 思路 登录校验Filter-流程 步骤 流程图 登录校验Filter-代码 过滤器类 工具类 测试登录 登录接口功能请求 其他接口功能请求 前后端联调 思路 前端访问登录接口,登陆成功后,服务端会生成一个JWT令牌,并返回给前端࿰…...

Vue3列表竖向滚动(包含使用swiper的翻页效果)
一、使用element-plus表格进行滚动: 可以满足的需求:表格一行一行竖向滚动,类似走马灯。 不能满足的需求:表格分页竖向滚动,有翻页的效果。 代码: <template><el-table:data"tableData"…...

OS 死锁处理
如果P先申请mutex 则mutex从1置零,假设申请到的empty 0则empty变成-1阻塞态 同理C中mutex从0变为-1,那么如果想离开阻塞态,那么就需要执行V(empty)但是如果执行V(empty)就需要P(mu…...

Java实现根据按图搜索商品数据,按图搜索获取1688商品详情数据,1688拍立淘接口,1688API接口封装方法
要通过按图搜索1688的API获取商品详情跨境属性数据,您可以使用1688开放平台提供的接口来实现。以下是一种使用Java编程语言实现的示例,展示如何通过1688开放平台API获取商品详情属性数据接口: 首先,确保您已注册成为1688开放平台…...

如何避免重复消费消息
博主介绍:✌全网粉丝3W,全栈开发工程师,从事多年软件开发,在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战,博主也曾写过优秀论文,查重率极低,在这方面有丰富的经验…...

【若依框架RuoYi-Vue-Plus 图片回显不显示问题,OSS文件上传或者本地上传】
一、问题 1.设计表 product(商品表) 有 id (id) name(商品名)icon(图标) 2.使用若依代码生成功能,导入product表,代码生成。 3.将生成的代码导入到项目中得到…...
docker搭建rocketmq环境
准备局域网 nameserver和broker在同一网段才能够互相访问,我们先创建一个局域网。 创建rocketmq-network,让nameserver、broker在同一个网段: docker network create --driverbridge \ --subnet192.168.2.10/24 rocketmq-network安装names…...
uwsgi部署多进程django apscheduler与问题排查
💖 作者简介:大家好,我是Zeeland,开源建设者与全栈领域优质创作者。📝 CSDN主页:Zeeland🔥📣 我的博客:Zeeland📚 Github主页: Undertone0809 (Zeeland)&…...

git difftool对比差异,避免推送不相关内容
问题 在利用git进行版本管理的时候,经常会由于对其他不相关的代码,做了一些小改动,例如删除了一个空行,多了一个缩进等。 为避免将这些不相关的改动也提交到远程,对PR造成不必要的影响,可以利用git diff命…...
Java设计模式:一、六大设计原则-05:接口隔离原则
文章目录 一、定义:接口隔离原则二、模拟场景:接口隔离原则三、违背方案:接口隔离原则3.1 工程结构3.2 英雄技能调用3.2.1 英雄技能接口3.2.2 英雄:后裔3.2.3 英雄:廉颇 3.3 单元测试 四、改善代码:接口隔离…...

第63步 深度学习图像识别:多分类建模误判病例分析(Tensorflow)
基于WIN10的64位系统演示 一、写在前面 上两期我们基于TensorFlow和Pytorch环境做了图像识别的多分类任务建模。这一期我们做误判病例分析,分两节介绍,分别基于TensorFlow和Pytorch环境的建模和分析。 本期以健康组、肺结核组、COVID-19组、细菌性&am…...
OpenCv读/写视频色差 方案
OpenCv read / write video color differenceOpenCv读/写视频色差 感谢博主: OpenCv读/写视频色差答案 - 爱码网 有没有办法让 OpenCV 使用正确的转换?? 是的,使用 GStreamer 后端而不是 FFmpeg 后端,颜色看起来很完…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
电脑插入多块移动硬盘后经常出现卡顿和蓝屏
当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

技术栈RabbitMq的介绍和使用
目录 1. 什么是消息队列?2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...