8. 损失函数与反向传播
8.1 损失函数
① Loss损失函数一方面计算实际输出和目标之间的差距。
② Loss损失函数另一方面为我们更新输出提供一定的依据。
8.2 L1loss损失函数
① L1loss数学公式如下图所示,例子如下下图所示。


import torch
from torch.nn import L1Loss
inputs = torch.tensor([1,2,3],dtype=torch.float32)
targets = torch.tensor([1,2,5],dtype=torch.float32)
inputs = torch.reshape(inputs,(1,1,1,3))
targets = torch.reshape(targets,(1,1,1,3))
loss = L1Loss() # 默认为 maen
result = loss(inputs,targets)
print(result)
结果:
tensor(0.6667)
import torch
from torch.nn import L1Loss
inputs = torch.tensor([1,2,3],dtype=torch.float32)
targets = torch.tensor([1,2,5],dtype=torch.float32)
inputs = torch.reshape(inputs,(1,1,1,3))
targets = torch.reshape(targets,(1,1,1,3))
loss = L1Loss(reduction='sum') # 修改为sum,三个值的差值,然后取和
result = loss(inputs,targets)
print(result)
结果:
tensor(2.)
8.3 MSE损失函数
① MSE损失函数数学公式如下图所示。
import torch
from torch.nn import L1Loss
from torch import nn
inputs = torch.tensor([1,2,3],dtype=torch.float32)
targets = torch.tensor([1,2,5],dtype=torch.float32)
inputs = torch.reshape(inputs,(1,1,1,3))
targets = torch.reshape(targets,(1,1,1,3))
loss_mse = nn.MSELoss()
result_mse = loss_mse(inputs,targets)
print(result_mse)
结果:
tensor(1.3333)
8.4 交叉熵损失函数
① 交叉熵损失函数数学公式如下图所示。


import torch
from torch.nn import L1Loss
from torch import nnx = torch.tensor([0.1,0.2,0.3])
y = torch.tensor([1])
x = torch.reshape(x,(1,3)) # 1的 batch_size,有三类
loss_cross = nn.CrossEntropyLoss()
result_cross = loss_cross(x,y)
print(result_cross)
结果:
tensor(1.1019)

8.5 搭建神经网络
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriterdataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset, batch_size=1,drop_last=True)class Tudui(nn.Module):def __init__(self):super(Tudui, self).__init__() self.model1 = Sequential(Conv2d(3,32,5,padding=2),MaxPool2d(2),Conv2d(32,32,5,padding=2),MaxPool2d(2),Conv2d(32,64,5,padding=2),MaxPool2d(2),Flatten(),Linear(1024,64),Linear(64,10))def forward(self, x):x = self.model1(x)return xtudui = Tudui()
for data in dataloader:imgs, targets = dataoutputs = tudui(imgs)print(outputs)print(targets)
结果:

8.6 数据集计算损失函数
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriterdataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset, batch_size=64,drop_last=True)class Tudui(nn.Module):def __init__(self):super(Tudui, self).__init__() self.model1 = Sequential(Conv2d(3,32,5,padding=2),MaxPool2d(2),Conv2d(32,32,5,padding=2),MaxPool2d(2),Conv2d(32,64,5,padding=2),MaxPool2d(2),Flatten(),Linear(1024,64),Linear(64,10))def forward(self, x):x = self.model1(x)return xloss = nn.CrossEntropyLoss() # 交叉熵
tudui = Tudui()
for data in dataloader:imgs, targets = dataoutputs = tudui(imgs)result_loss = loss(outputs, targets) # 计算实际输出与目标输出的差距print(result_loss)
结果:

8.7 损失函数反向传播
① 反向传播通过梯度来更新参数,使得loss损失最小,如下图所示。

import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriterdataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset, batch_size=64,drop_last=True)class Tudui(nn.Module):def __init__(self):super(Tudui, self).__init__() self.model1 = Sequential(Conv2d(3,32,5,padding=2),MaxPool2d(2),Conv2d(32,32,5,padding=2),MaxPool2d(2),Conv2d(32,64,5,padding=2),MaxPool2d(2),Flatten(),Linear(1024,64),Linear(64,10))def forward(self, x):x = self.model1(x)return xloss = nn.CrossEntropyLoss() # 交叉熵
tudui = Tudui()
for data in dataloader:imgs, targets = dataoutputs = tudui(imgs)result_loss = loss(outputs, targets) # 计算实际输出与目标输出的差距result_loss.backward() # 计算出来的 loss 值有 backward 方法属性,反向传播来计算每个节点的更新的参数。这里查看网络的属性 grad 梯度属性刚开始没有,反向传播计算出来后才有,后面优化器会利用梯度优化网络参数。 print("ok")
相关文章:
8. 损失函数与反向传播
8.1 损失函数 ① Loss损失函数一方面计算实际输出和目标之间的差距。 ② Loss损失函数另一方面为我们更新输出提供一定的依据。 8.2 L1loss损失函数 ① L1loss数学公式如下图所示,例子如下下图所示。 import torch from torch.nn import L1Loss inputs torch.tens…...
Angular安全专辑之四 —— 避免服务端可能的资源耗尽(NodeJS)
express-rate-limit是一个简单实用的npm包,用于在Express应用程序中实现速率限制。它可以帮助防止DDoS攻击和暴力破解,同时还允许对API端点进行流控。 express-rate-limit及其主要功能 express-rate-limit是Express框架的一个流行中间件,它允许根据IP地址或其他标准轻松地对请求…...
Servlet学习总结(Request请求与转发,Response响应,Servlet生命周期、体系结构、执行流程等...)
Override 是Java中的注解(Annotation),它用于告诉编译器该方法是覆盖(重写)父类中的方法。当我们使用Override注解时,编译器会检查当前方法是否正确地覆盖了父类中的方法,如果没有覆盖成功&…...
雅思写作 三小时浓缩学习顾家北 笔记总结(二)
目录 饥饿网一百句翻译 Using government funds for pollution cleanup work can create a comfortable environment. "Allocating government funds to pollution cleanup work can contribute to the creation of a comfortable environment." Some advertise…...
Element Plus 日期选择器的使用和属性
element plus 日期选择器如果如果没有进行处理 他会返回原有的属性值data格式 如果想要获取选中的日期时间就需要通过以下的代码来实现选中的值 format"YYYY/MM/DD" value-format"YYYY-MM-DD" <el-date-pickerv-model"formInline.date" type&…...
中国五百强企业用泛微为合同加速,提升数字化办公水平
华谊集团借力泛微,融合企业微信、SAP、WPS、电子签章等多种系统,构建了业务集成、场景驱动的全程数字化合同管理平台。 上海华谊(集团)公司是由上海市政府国有资产监督管理委员会授权,通过资产重组建立的大型化工企业…...
Vue3 QRCode生成
一. 依赖安装 npm install vue-qr --save 二. 引用与使用 引用 <script> // import vueqr from vue-qr vue2的引入 import vueqr from vue-qr/src/packages/vue-qr.vue // vue3的引入 export default {components: {vueqr} } </script> 使用 <template>&…...
2023年8月随笔之有顾忌了
1. 回头看 日更坚持了243天。 读《发布!设计与部署稳定的分布式系统》终于更新完成 选读《SQL经典实例》也更新完成 读《高性能MySQL(第4版)》开更,但目前暂缓 读《SQL学习指南(第3版)》开更并持续更新…...
正中优配:红筹股是啥意思?
随着我国经济的高速开展,越来越多的人开始参加到股票出资中。其中,红筹股作为一种特别类型的股票,备受一些出资者的关注,但对于一般出资者来说,红筹股详细含义还不是特别清楚。本文将从多个角度探讨红筹股的含义、特征…...
《Linux从练气到飞升》No.19 进程等待
🕺作者: 主页 我的专栏C语言从0到1探秘C数据结构从0到1探秘Linux菜鸟刷题集 😘欢迎关注:👍点赞🙌收藏✍️留言 🏇码字不易,你的👍点赞🙌收藏❤️关注对我真的…...
OpenCV
文章目录 OpenCV学习报告读取图片和网络摄像头1.1 图片读取1.2 视频读取1.1.1 读取视频文件1.1.2读取网络摄像头 OpenCV基础功能调整、裁剪图像3.1 调整图像大小3.2 裁剪图像 图像上绘制形状和文本4.1 图像上绘制形状4.2图像上写文字 透视变换图像拼接颜色检测轮廓检测人脸检测…...
hadoop解决数据倾斜的方法
分析&回答 1,如果预聚合不影响最终结果,可以使用conbine,提前对数据聚合,减少数据量。使用combinner合并,combinner是在map阶段,reduce之前的一个中间阶段,在这个阶段可以选择性的把大量的相同key数据先进行一个合并,可以看做…...
打造坚不可摧的代码堡垒 - 搭建GitLab私有仓库完全指南
在现代软件开发中,版本控制是一个不可或缺的环节。GitLab是一个流行的版本控制平台,允许开发团队协同工作并管理他们的代码。在某些情况下,您可能希望将您的代码托管在一个私有仓库中,以确保代码的安全性和机密性。在本文中&#…...
linux把文件压缩/解压成.tar.gz/tar/tgz等格式的命令大全
linux把文件压缩/解压成.tar.gz/tar/tgz等格式的命令大全 linux压缩命令常用的有:tar,tgz,gzip,zip,rar 一,tar(一) tar压缩命令#说明:#举例: (二…...
用户角色权限demo后续出现问题和解决
将demo账号给到理解和蒋老师,测试的时候将登录人账号改了,结果登录不了了,后续还需要分配权限无法更改他人的账号和密码 将用户和权限重新分配(数据库更改,不要学我) 试着登录还是报一样的错,但…...
SpringBoot在IDEA里实现热部署
使用步骤 1.引入依赖 <!--devtools热部署--> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-devtools</artifactId><optional>true</optional><scope>true</scope><versi…...
浅谈Linux中的mkdir -p
mkdir 是一个用于创建目录(目录树)的 Unix 和 Linux 命令。-p 选项允许创建一个目录和它不存在的父目录。换句话说,-p 选项确保了指定的整个目录路径都会被创建。 基础用法 如果你只是运行 mkdir new_directory,这个命令会尝试在…...
设计模式—职责链模式(Chain of Responsibility)
目录 思维导图 什么是职责链模式? 有什么优点呢? 有什么缺点呢? 什么场景使用呢? 代码展示 ①、职责链模式 ②、加薪代码重构 思维导图 什么是职责链模式? 使多个对象都有机会处理请求,从而避免请…...
vue小测试之拖拽、自定义事件
在开始之前我去复习了一下,clientX、clientY、pageX、pageY的区别,对于不熟悉offsetLeft和offsetTop的也可以在这里去复习一下。 vue拖拽指令之offsetX、clientX、pageX、screenX_wade3po的博客-CSDN博客_vue offset 客户区坐标位置(clientX&…...
时序预测 | MATLAB实现DBN-SVM深度置信网络结合支持向量机时间序列预测(多指标评价)
时序预测 | MATLAB实现DBN-SVM深度置信网络结合支持向量机时间序列预测(多指标评价) 目录 时序预测 | MATLAB实现DBN-SVM深度置信网络结合支持向量机时间序列预测(多指标评价)效果一览基本描述程序设计参考资料 效果一览 基本描述 MATLAB实现DBN-SVM深度置信网络结合支持向量机…...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...
(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...
Spring数据访问模块设计
前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...
Linux 中如何提取压缩文件 ?
Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...
消防一体化安全管控平台:构建消防“一张图”和APP统一管理
在城市的某个角落,一场突如其来的火灾打破了平静。熊熊烈火迅速蔓延,滚滚浓烟弥漫开来,周围群众的生命财产安全受到严重威胁。就在这千钧一发之际,消防救援队伍迅速行动,而豪越科技消防一体化安全管控平台构建的消防“…...
boost::filesystem::path文件路径使用详解和示例
boost::filesystem::path 是 Boost 库中用于跨平台操作文件路径的类,封装了路径的拼接、分割、提取、判断等常用功能。下面是对它的使用详解,包括常用接口与完整示例。 1. 引入头文件与命名空间 #include <boost/filesystem.hpp> namespace fs b…...
基于stm32F10x 系列微控制器的智能电子琴(附完整项目源码、详细接线及讲解视频)
注:文章末尾网盘链接中自取成品使用演示视频、项目源码、项目文档 所用硬件:STM32F103C8T6、无源蜂鸣器、44矩阵键盘、flash存储模块、OLED显示屏、RGB三色灯、面包板、杜邦线、usb转ttl串口 stm32f103c8t6 面包板 …...
