当前位置: 首页 > news >正文

时序预测 | MATLAB实现DBN-SVM深度置信网络结合支持向量机时间序列预测(多指标评价)

时序预测 | MATLAB实现DBN-SVM深度置信网络结合支持向量机时间序列预测(多指标评价)

目录

    • 时序预测 | MATLAB实现DBN-SVM深度置信网络结合支持向量机时间序列预测(多指标评价)
      • 效果一览
      • 基本描述
      • 程序设计
      • 参考资料

效果一览

1
2

基本描述

MATLAB实现DBN-SVM深度置信网络结合支持向量机时间序列预测(多指标评价)
DBN是一种多层神经网络,可以通过逐层训练来提取时间序列数据的特征。用DBN模型提取时间序列数据的特征。使用支持向量机工具箱中的函数构建SVM模型。支持向量机是一种监督学习算法,可以用于分类和回归任务。使用MATLAB的支持向量机工具箱中的函数来构建SVM模型。使用SVM模型进行时间序列预测。将DBN提取的特征作为输入,使用SVM模型进行时间序列的预测。

程序设计

  • 完整源码和数据获取方式:私信回复MATLAB实现DBN-SVM深度置信网络结合支持向量机时间序列预测(多指标评价)
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  导入数据(时间序列的单列数据)
result = xlsread('data.xlsx');
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------%%  绘图
figure
plot(1: M, T_train, 'y-', 1: M, T_sim1, 'b-', 'LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]};
title(string)
xlim([1, M])
grid
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
figure
plot(1: N, T_test, 'm-', 1: N, T_sim2, 'g-', 'LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比';['RMSE=' num2str(error2)]};
title(string)
xlim([1, N])
grid
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%  MBE
mbe1 = sum(T_sim1' - T_train) ./ M ;
mbe2 = sum(T_sim2' - T_test ) ./ N ;
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关文章:

时序预测 | MATLAB实现DBN-SVM深度置信网络结合支持向量机时间序列预测(多指标评价)

时序预测 | MATLAB实现DBN-SVM深度置信网络结合支持向量机时间序列预测(多指标评价) 目录 时序预测 | MATLAB实现DBN-SVM深度置信网络结合支持向量机时间序列预测(多指标评价)效果一览基本描述程序设计参考资料 效果一览 基本描述 MATLAB实现DBN-SVM深度置信网络结合支持向量机…...

Python中异步编程是什么意思? - 易智编译EaseEditing

异步编程是一种编程模式,用于处理可能会导致程序等待的操作,例如网络请求、文件读写或长时间的计算任务,而不会阻塞整个程序的执行。 在传统的同步编程中,当程序执行一个耗时的操作时,它会等待该操作完成,…...

【JS真好玩】自动打字机效果

目录 一、前言二、布局分析三、总体样式四、中间部分五、底部5.1 div5.2 label5.3 input 六、JS让它动起来6.1定时器6.2 字符串处理6.2.1 slice6.2.2 splice6.3.3 split 七、总结 一、前言 大家好,今天实现一个自动打字机效果,旨在实现一些网上很小的de…...

宠物赛道,用AI定制宠物头像搞钱项目教程

今天给大家介绍一个非常有趣,而粉丝价值又极高,用AI去定制宠物头像或合照的AI项目。 接触过宠物行业应该知道,获取1位铲屎官到私域,这类用户的价值是极高的,一个宠物粉,是连铲个屎都要花钱的,每…...

基于vue和element的脚手架【vue-element-admin 和vue-element-plus-admin 】

vue-element-admin vue-element-admin 是一个后台前端解决方案,它基于 vue 和 element-ui实现 介绍 | vue-element-adminA magical vue adminhttps://panjiachen.github.io/vue-element-admin-site/zh/guide/ vue-element-plus-admin vue-element-plus-admin 是一…...

推荐Java开发常用的工具类库google guava

Guava Guava是一个Google开源的Java核心库,它提供了许多实用的工具和辅助类,使Java开发更加简洁、高效、可靠。目前和hutool一起,是业界常用的工具类库。shigen也比较喜欢使用,在这里列举一下常用的工具类库和使用的案例。 参考…...

stencilJs学习之构建 Drawer 组件

前言 在之前的学习中,我们已经掌握了 stencilJs 中的一些核心概念和基础知识,如装饰器 Prop、State、Event、Listen、Method、Component 以及生命周期方法。这些知识是构建复杂组件和应用的基础,而抽屉组件是一个很好的示例,能够…...

hbase 国内镜像 极速下载

文章目录 国内镜像汇总-极速下载【JavaPub版】 lucene国内镜像 https://mirrors.cloud.tencent.com/apache/hbase/ 国内镜像汇总-极速下载【JavaPub版】...

Linux驱动——Tiny4412芯片_Source Insight的下载+Linux3.5内核下工程的创建

文章目录 前言Source Insight的下载1.下载地址2.下载步骤 linux3.5内核下工程的创建 前言 本博客仅作为笔记总结,以及帮助有需要的人,不作权威解释。 Source Insight的下载 1.下载地址 官网:https://www.sourceinsight.com/ 另外可以选择…...

rust交叉编译 在mac下编译linux和windows

系统版本macbook proVentura 13.5linux ubuntu22.04.3 LTS/18.04.6 LTSwindowswindows 10 专业版 20H2mac下rustc --versionrustc 1.74.0-nightly (58eefc33a 2023-08-24)查看当前系统支持的交叉编译指定系统版本列表 rustup target list如果已经安装这里会显示(installed)。…...

linux离线环境安装redis

先检查gcc版本,使用gcc --version进行检查,版本在5以下的,安装redis要安装redis6以下的版本 如果没有gcc命令,要先安装gcc命令。因为是离线环境,yum命令什么的用不了。为了安装gcc,进行了几种尝试。 1、下…...

记录学习--字节码解析try catch

1.示例代码 Testpublic void someTest() {String s "111";try {s "222";int i 1/0;} catch (Exception e){e.printStackTrace();System.out.println(s);}System.out.println(s);}2.示例代码对应的字节码 0 ldc #2 <111>2 astore_13 ldc #3 <22…...

多线程与高并发——并发编程(3)

文章目录 三、锁1 锁的分类1.1 可重入锁、不可重入锁1.2 乐观锁、悲观锁1.3 公平锁、非公平锁1.4 互斥锁、共享锁2 深入synchronized2.1 类锁、对象锁2.2 synchronized的优化2.3 synchronized实现原理2.4 synchronized的锁升级2.5 重量级锁底层 ObjectMonitor3 深入ReentrantLo…...

关于内网主备+https

先openssl证书 整体流程为&#xff1a; 1、页面访问为https&#xff0c;在电脑修改hosts文件&#xff0c;如域名为 babaozhou.com, 则配置为 ip1 babaozhou.com&#xff0c;ip2 babaozhou.com&#xff1b; 也就是说同域名关联两个ip&#xff0c;这样如果服务器1ping不通了则可…...

java入坑之网络编程

一、 网络基础知识 1.1网卡 1.2IP地址 1.3端口 1.4保留IP 1.5网络协议 二、UDP 编程 2.1相关概念 计算机通讯&#xff1a;数据从一个IP的port出发&#xff08;发送方&#xff09;&#xff0c;运输到另外一个IP的port&#xff08;接收方&#xff09; UDP&#xff1a;无连接无…...

A Survey on Large Language Model based Autonomous Agents

本文是LLM系列的文章&#xff0c;针对《A Survey on Large Language Model based Autonomous Agents》的翻译。 基于大模型的自动agents综述 摘要1 引言2 基于LLM的自动代理构建3 基于LLM的自动代理应用4 基于LLM的自动代理评估5 相关综述6 挑战6.1 角色扮演能力6.2 广义与人对…...

Integer、Long 等包装类 == 值判断、地址判断与缓存

先看下以下代码和输出 public static void main(String[] args) throws Exception{Integer a-128;Integer aa-128;System.out.printf("aaa? %s \n",aaa);Integer b127;Integer bb127;System.out.printf("bbb? %s \n",bbb);Integer c128;Integer cc128;Sy…...

numpy学习:reshape和resize

.reshape 与 .resize reshape&#xff1a;有返回值&#xff0c;所谓有返回值&#xff0c;即不对原始多维数组进行修改&#xff1b; resize&#xff1a;无返回值&#xff0c;所谓无返回值&#xff0c;即会对原始多维数组进行修改&#xff1b;...

JPA在不写sql的情况下实现模糊查询

本文已收录于专栏 《Java》 目录 背景介绍概念说明单字段模糊匹配&#xff1a;多字段模糊匹配&#xff1a; 实现过程代码实现1.写一个实体类去实现Specification接口&#xff0c;重写toPredicate方法2.定义一个接口去继承JpaRepository接口&#xff0c;并指定返回的类型和参数类…...

Java设计模式之单例模式

单例模式是一种设计模式&#xff0c;它的目的是确保一个类只有一个实例&#xff0c;并提供一个全局访问点来访问该实例。这个模式通常在需要控制资源访问权、限制实例化数量或实现全局共享时使用。 在实现单例模式时&#xff0c;一般会定义一个私有的构造函数&#xff0c;以防…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 &#xff08;结构体大小计算及位段 详解请看&#xff1a;自定义类型&#xff1a;结构体进阶-CSDN博客&#xff09; 1.在32位系统环境&#xff0c;编译选项为4字节对齐&#xff0c;那么sizeof(A)和sizeof(B)是多少&#xff1f; #pragma pack(4)st…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

剑指offer20_链表中环的入口节点

链表中环的入口节点 给定一个链表&#xff0c;若其中包含环&#xff0c;则输出环的入口节点。 若其中不包含环&#xff0c;则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题

分区配置 (ptab.json) img 属性介绍&#xff1a; img 属性指定分区存放的 image 名称&#xff0c;指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件&#xff0c;则以 proj_name:binary_name 格式指定文件名&#xff0c; proj_name 为工程 名&…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式&#xff08;本地调用&#xff09; SSE模式&#xff08;远程调用&#xff09; 4. 注册工具提…...

push [特殊字符] present

push &#x1f19a; present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中&#xff0c;push 和 present 是两种不同的视图控制器切换方式&#xff0c;它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...