xml转化为txt数据的脚本,为yolo提供训练
这里写自定义目录标题
- xml转化为txt数据的脚本
xml转化为txt数据的脚本
代码如下:
import xml.etree.ElementTree as ET
import os, cv2
import numpy as np
from os import listdir
from os.path import joinclasses = []def convert(size, box):dw = 1. / (size[0])dh = 1. / (size[1])x = (box[0] + box[1]) / 2.0 - 1y = (box[2] + box[3]) / 2.0 - 1w = box[1] - box[0]h = box[3] - box[2]x = x * dww = w * dwy = y * dhh = h * dhreturn (x, y, w, h)def convert_annotation(xmlpath, xmlname):with open(xmlpath, "r", encoding='utf-8') as in_file:txtname = xmlname[:-4] + '.txt'txtfile = os.path.join(txtpath, txtname)tree = ET.parse(in_file)root = tree.getroot()filename = root.find('filename')img = cv2.imdecode(np.fromfile('{}/{}.{}'.format(imgpath, xmlname[:-4], postfix), np.uint8), cv2.IMREAD_COLOR)h, w = img.shape[:2]res = []for obj in root.iter('object'):cls = obj.find('name').textif cls not in classes:classes.append(cls)cls_id = classes.index(cls)xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))bb = convert((w, h), b)res.append(str(cls_id) + " " + " ".join([str(a) for a in bb]))if len(res) != 0:with open(txtfile, 'w+') as f:f.write('\n'.join(res))if __name__ == "__main__":postfix = 'jpg'imgpath = 'JPEGImages_Val'xmlpath = 'Annotations_Val'txtpath = 'labels_Val'if not os.path.exists(txtpath):os.makedirs(txtpath, exist_ok=True)list = os.listdir(xmlpath)error_file_list = []for i in range(0, len(list)):try:path = os.path.join(xmlpath, list[i])if ('.xml' in path) or ('.XML' in path):convert_annotation(path, list[i])print(f'file {list[i]} convert success.')else:print(f'file {list[i]} is not xml format.')except Exception as e:print(f'file {list[i]} convert error.')print(f'error message:\n{e}')error_file_list.append(list[i])print(f'this file convert failure\n{error_file_list}')print(f'Dataset Classes:{classes}')
相关文章:
xml转化为txt数据的脚本,为yolo提供训练
这里写自定义目录标题 xml转化为txt数据的脚本 xml转化为txt数据的脚本 代码如下: import xml.etree.ElementTree as ET import os, cv2 import numpy as np from os import listdir from os.path import joinclasses []def convert(size, box):dw 1. / (size[0…...
【H5页面嵌入到小程序或APP中实现手机号点击复制和拨号功能】
在H5界面嵌入到小程序和移动应用(安卓和iOS)中实现手指点击手机号弹出弹窗,包含呼叫和复制选项,是可以实现的。下面我将为你提供一个基本的示例,并解释在小程序、安卓和iOS中要做的支持工作。 <!DOCTYPE html> …...
Kubernetes技术--k8s核心技术 configMap
1.概述 configMap最主要的作用是存储一些不加密的数据到/etcd,让pod以变量或者数据卷(volume)挂载到容器。 应用场景:配置文件、存储信息等 2.使用 -1.创建配置文件。 这里我们需要先编写一个配置文件。使用redis,如下所示:...
Springboot动态修改日志级别
在开发和运维过程中,我们经常需要调整日志级别来查看不同级别的日志信息。传统的做法是修改配置文件,然后重启应用程序。但是,在分布式系统中,重启应用程序可能比较麻烦,而且也影响了业务的正常运行。 Springboot提供…...
新手将最简单的springboot部署上tomcat出现的意外问题
现阶段springboot部署到tomcat的文章一抓一大把且都相同,便贴一个地址以展示流程: SpringBoot打war包部署Tomcat(最全)_spring boot war 部署tomcat_聊Java的博客-CSDN博客 那么就说一下我出现的问题: 在完整复现流程且确认代码无误的情况下,部署到tomcat,此时问题出现了:启动…...
P1177 【模板】排序(Sort排序)
题目描述 将读入的 N N N 个数从小到大排序后输出。 输入格式 第一行为一个正整数 N N N。 第二行包含 N N N 个空格隔开的正整数 a i a_i ai,为你需要进行排序的数。 输出格式 将给定的 N N N 个数从小到大输出,数之间空格隔开,…...
软件测试(黑盒测试、白盒测试、灰盒测试)
软件测试方法大类上分为黑盒测试、白盒测试和灰盒测试三种 一、黑盒测试 黑盒测试通俗来说即不知道代码是怎么写的。具体实现逻辑,基于代码输入有哪些应该输出什么进行测试的方法。其方法有:基于直觉和经验的方法(IEBT)、基于需…...
昨天面试的时候被提问到的问题集合。
1、vue的双向绑定原理是什么?里面的关键点在哪里? 2、实现水平垂直居中的方式? 3、常用伪元素有哪一些? 4、移动端如何适配不同屏幕尺寸? 5、本地存储有哪一些?他们三者有什么区别? 6、JS的数据…...
广电运营商三网融合监控运维方案
随着三网融合逐步发展、深化,广电网络从为用户提供原本单一的信息服务转向了集语音、文字、图像为一体的信息服务,同时也实现了由单一独立的网络向综合性网络的改变。如何在业务的融合与竞争中创造核心竞争力,利用自身网络覆盖率上的优势&…...
数据库锁简析
数据库大并发操作要考虑死锁和锁的性能问题。用T1代表一个数据库执行请求,T2代表另一个请求,也可以理解为T1为一个线程,T2 为另一个线程。T3,T4以此类推。下面以SQL Server为例。 锁的种类 共享锁(Shared lock) 例1:T1: select…...
说说广播流与普通流
分析&回答 user actions 可以看作是事件流(普通流)patterns 为广播流,把全量数据加载到不同的计算节点。 广播流 Broadcast是一份存储在TaskManager内存中的只读的缓存数据在执行job的过程中需要反复使用的数据,为了达到数据共享&am…...
内卷的本质和大数据在计量经济学领域的运用思考
内卷的本质和大数据在计量经济学领域的运用思考 今天我们来思考两个问题: 当下经济的困局在哪里?为何内卷越来越严重?内卷的本质是什么?为何会出现内卷?市场经济运行的底层逻辑是什么?西方经济学理论的指导…...
毕业设计-摄像头识别二维码
本毕业设计采用imx6ull-linux4.1.15-qt5.6开发板进行测试 相关交叉编译包和摄像头测试程序已上传:https://download.csdn.net/download/qq_42952079/88282608 将zbar和opencv下的lib库文件拷贝到开发板的lib目录下,将camera可执行文件拷贝到开发板目录下…...
封装动态表单组件
技术栈:vue2 js webpack 需求: 利用数据渲染表单,实现代码的精简化及效率的提升。 效果图: 封装的组件: <div v-if"formConfig"><el-formv-bind"$attrs"ref"formDom":model…...
提高Python并发性能 - asyncio/aiohttp介绍
在进行大规模数据采集时,如何提高Python爬虫的并发性能是一个关键问题。本文将向您介绍使用asyncio和aiohttp库实现异步网络请求的方法,并通过具体结果和结论展示它们对于优化爬虫效率所带来的效果。 1. 什么是异步编程? 异步编程是一种非阻…...
网络性能的四大指标:带宽、时延、抖动、丢包
原文链接:https://www.eet-china.com/mp/a82420.html 怎么去描述网络性能的好坏? 你如果说这个网络很好,那里的网络有点差!这无异于看这风景美如画,本想吟诗赠天下,怎奈自己没文化,只能卧槽浪好大。 我们得用专业的术语去描述它…...
MySQL高阶查询语句
目录 一、常用查询 1、按关键字排序 1.1 升序排序 1.2 降序排序 1.3 结合where进项条件过滤再排序 1.4 多条件排序 2、区间判断及查询不重复记录 2.1 and/or(且/或) 2.2 嵌套 /多条件 2.3 distinct 查询不重复记录 3、对结果进行分组 4、限…...
未来科技城携手加速科技 共建集成电路测试公共服务平台!
8月26日,2023未来产业发展大会在杭州未来科技城国际会议中心开幕!会上,发布了未来科技城培育发展未来产业行动计划,启动了未来产业发展共同体,进行了未来产业公共服务平台签约仪式。未来科技城与加速科技签约共建集成电…...
渗透测试漏洞原理之---【失效的访问控制】
文章目录 1、失效的访问控制1.1、OWASP Top 101.1.1、A5:2017-Broken Access Control1.1.2、A01:2021 – Broken Access Control 1.2、失效的访问控制类别1.2.1、水平越权1.2.2、垂直越权 1.3、攻防案例1.3.1、Pikachu靶场 Over Permision1.3.2、DVWA越权利用失效的访问控制漏洞…...
opencv的使用(Ubuntu linux环境,AS jni,AS java)
最近要完成一个功能,就是把四个视频合成左右上下分布的一个视频。尝试很多方法,最终使用opencv来实现该功能。(通过opencv实现的视频好像没有声音。)研究的步骤,首先在Ubuntu环境测试,该功能是否实现。然后再将生成的库文件放到AS中,使用jni的方法调用,或者将源码放到A…...
Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
Keil 中设置 STM32 Flash 和 RAM 地址详解
文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...
【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案
在大数据时代,海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构,在处理大规模数据抓取任务时展现出强大的能力。然而,随着业务规模的不断扩大和数据抓取需求的日益复杂,传统…...
Python 高效图像帧提取与视频编码:实战指南
Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...
阿里云Ubuntu 22.04 64位搭建Flask流程(亲测)
cd /home 进入home盘 安装虚拟环境: 1、安装virtualenv pip install virtualenv 2.创建新的虚拟环境: virtualenv myenv 3、激活虚拟环境(激活环境可以在当前环境下安装包) source myenv/bin/activate 此时,终端…...
