D360周赛复盘:模拟(思维题目)⭐⭐+贪心解决可能的最小和(类似上次)
文章目录
- 2833.距离原点最远的点
- 思路
- 完整版
- 2834.找出美丽数组的最小和
- 思路
- 完整版
2833.距离原点最远的点
给你一个长度为 n 的字符串 moves ,该字符串仅由字符 'L'、'R' 和 '_' 组成。字符串表示你在一条原点为 0 的数轴上的若干次移动。
你的初始位置就在原点(0),第 i 次移动过程中,你可以根据对应字符选择移动方向:
- 如果
moves[i] = 'L'或moves[i] = '_',可以选择向左移动一个单位距离 - 如果
moves[i] = 'R'或moves[i] = '_',可以选择向右移动一个单位距离
移动 n 次之后,请你找出可以到达的距离原点 最远 的点,并返回 从原点到这一点的距离 。
示例 1:
输入:moves = "L_RL__R"
输出:3
解释:可以到达的距离原点 0 最远的点是 -3 ,移动的序列为 "LLRLLLR" 。
示例 2:
输入:moves = "_R__LL_"
输出:5
解释:可以到达的距离原点 0 最远的点是 -5 ,移动的序列为 "LRLLLLL" 。
示例 3:
输入:moves = "_______"
输出:7
解释:可以到达的距离原点 0 最远的点是 7 ,移动的序列为 "RRRRRRR" 。
提示:
1 <= moves.length == n <= 50moves仅由字符'L'、'R'和'_'组成
思路
- 当
L_count>R_count时,字符串中向左的移动比向右的多。而每个 _ 可以视为一个“自由移动”,它可以选择向左或向右移动。为了到达原点最远的距离,所有的 _都应该选择向左移动。所以,abs(L_count - R_count) + _count就是最远的距离。
这个解法的核心思想是,为了达到最远的距离,应该尽可能地选择一个方向移动。
完整版
- 因为需要移动n次,所有的移动字符都需要被遍历。因此,我们需要将L的总数与R的总数相减,再加上自由步数。
class Solution {
public:int furthestDistanceFromOrigin(string moves) {int L_count = count(moves.begin(),moves.end(),'L');int R_count = count(moves.begin(),moves.end(),'R');int _count = count(moves.begin(),moves.end(),'_');return abs(L_count-R_count)+_count;}
};
2834.找出美丽数组的最小和
给你两个正整数:n 和 target 。
如果数组 nums 满足下述条件,则称其为 美丽数组 。
nums.length == n.nums由两两互不相同的正整数组成。- 在范围
[0, n-1]内,不存在 两个 不同 下标i和j,使得nums[i] + nums[j] == target。
返回符合条件的美丽数组所可能具备的 最小 和。
示例 1:
输入:n = 2, target = 3
输出:4
解释:nums = [1,3] 是美丽数组。
- nums 的长度为 n = 2 。
- nums 由两两互不相同的正整数组成。
- 不存在两个不同下标 i 和 j ,使得 nums[i] + nums[j] == 3 。
可以证明 4 是符合条件的美丽数组所可能具备的最小和。
示例 2:
输入:n = 3, target = 3
输出:8
解释:
nums = [1,3,4] 是美丽数组。
- nums 的长度为 n = 3 。
- nums 由两两互不相同的正整数组成。
- 不存在两个不同下标 i 和 j ,使得 nums[i] + nums[j] == 3 。
可以证明 8 是符合条件的美丽数组所可能具备的最小和。
示例 3:
输入:n = 1, target = 1
输出:1
解释:nums = [1] 是美丽数组。
提示:
1 <= n <= 1051 <= target <= 105
思路
本题就和上次周赛的贪心很像了,求得也是可能的最小和,所以需要从最小的数字开始取!
完整版
和上次周赛代码基本相同,求的都是可能的最小和问题。
class Solution {
public:long long minimumPossibleSum(int n, int target) {set<long long>used;int cur = 1;long long sum=0;for(int i=1;i<=n;i++){while(used.count(cur)||used.count(target-cur)){cur++;}used.insert(cur);sum+=cur;}return sum;}
};
相关文章:
D360周赛复盘:模拟(思维题目)⭐⭐+贪心解决可能的最小和(类似上次)
文章目录 2833.距离原点最远的点思路完整版 2834.找出美丽数组的最小和思路完整版 2833.距离原点最远的点 给你一个长度为 n 的字符串 moves ,该字符串仅由字符 L、R 和 _ 组成。字符串表示你在一条原点为 0 的数轴上的若干次移动。 你的初始位置就在原点…...
【C++学习】函数指针
#include<iostream> //包含头文件 using namespace std; void func(int no, string str){cout << "亲爱的"<< no << "号:" << str << endl; }int main(){int bh 3;string message "我是一只傻傻鸟";func…...
A. Copil Copac Draws Trees
Problem - 1830A - Codeforces 问题描述: 科皮尔-科帕克(Copil Copac)得到一个由 n − 1 n-1 n−1条边组成的列表,该列表描述了一棵由 n n n个顶点组成的树。他决定用下面的算法来绘制它: 步骤 0 0 0:…...
D359周赛复盘:贪心解决求最小和问题⭐⭐+较为复杂的双层线性DP⭐⭐
文章目录 2828.判别首字母缩略词完整版 2829.k-avoiding数组的最小总和(贪心解法)思路完整版 类似题:2834.找出美丽数组的最小和思路完整版 2830.销售利润最大化⭐⭐思路DP数组含义递推公式 完整版 2828.判别首字母缩略词 给你一个字符串数组…...
python基础之miniConda管理器
一、介绍 MiniConda 是一个轻量级的 Conda 版本,它是 Conda 的精简版,专注于提供基本的环境管理功能。Conda 是一个流行的开源包管理系统和环境管理器,用于在不同的操作系统上安装、管理和运行软件包。 与完整版的 Anaconda 相比,…...
C++算法 —— 分治(1)快排
文章目录 1、颜色分类2、排序数组3、第k个最大的元素(快速选择)4、最小的k个数(快速选择) 分治,就是分而治之,把大问题划分成多个小问题,小问题再划分成更小的问题。像快排和归并排序就是分治思…...
接口用例设计
章节目录: 一、针对输入设计1.1 数值型1.2 字符串型1.3 数组或链表类型 二、针对业务逻辑2.1 约束条件分析2.2 操作对象分析2.3 状态转换分析2.4 时序分析 三、针对输出设计3.1 针对输出结果3.2 接口超时 四 、其他测试设计4.1 已废弃接口测试4.2 接口设计合理性分析…...
Selenium超级详细的教程
Selenium是一个用于自动化测试的工具,它可以模拟用户在浏览器中的各种操作。除了用于测试,Selenium还可以用于爬虫,特别是在处理动态加载页面时非常有用。本文将为您提供一个超级详细的Selenium教程,以帮助您快速入门并了解其各种…...
服务报network error错误
问题:服务请求时会偶发性的报【network error网络超时】(请求瞬间就报) 可能原因: 服务器linux内核调优时将:net.ipv4.tcp_tw_recycle设置为1,开启TCP连接中TIME-WAIT sockets的快速回收,默认为…...
【ES6】利用 Proxy实现函数名链式效果
利用 Proxy,可以将读取属性的操作(get),转变为执行某个函数,从而实现属性的链式操作。 var pipe function (value) {var funcStack [];var oproxy new Proxy({} , {get : function (pipeObject, fnName) {if (fnNa…...
hive部署
下载hive安装包:https://dlcdn.apache.org/hive/hive-2.3.9/解压及环境部署 tar -zxvf apache-hive-2.3.9-bin.tar.gz mv apache-hive-2.3.9-bin hivevim /etc/profile添加至环境变量 export HIVE_HOME/usr/local/hive export PATH$PATH:$HIVE_HOME/binsource /etc…...
ip白名单之网段
代码托管,有时候为了安全性,限制网段内的ip可以访问。 IP地址和掩码均知道时才能确定主机所在的网段,也就是用这个原理来限制可访问的IP网段了。 ip后面加上“/N”就代表掩码的二进制”1“有N位。 例如: ①0.0.0.0/0 主机ip地…...
PMP项目管理主要学习内容是什么?
PMP项目管理是指根据美国项目管理学会(Project Management Institute,简称PMI)制定的项目管理知识体系和方法论进行项目管理的一种认证。PMP主要关注项目的规划、执行和控制等方面的知识和技能。 下面是PMP项目管理《PMBOK指南》第六版的主要学习内容: …...
小米面试题——不用加减乘除计算两数之和
前言 (1)刷B站看到一个面试题,不用加减乘除计算两数之和。 (2)当时我看到这个题目,第一反应就是感觉这是一个数电题目。不过需要采用C语言的方式编写出来。 (3)不过看到大佬的代码之…...
Mysql 日志管理 数据备份
MySQL日志管理 MySQL的默认日志保存位置为/usr/local/mysql/data 日志开启方式有两种:通过配置文件或者是通过命令 通过命令修改开启的日志是临时的,关闭或重启服务后就会关闭 日志的分类 1.错误日志 用来记录当MySQL启动、停止或运行时发生的错误信…...
Java小记-腾讯2020校招-后台-逛街
题目描述: 小Q在周末的时候和他的小伙伴来到大城市逛街,一条步行街上有很多高楼,共有n座高楼排成一行。 小Q从第一栋一直走到了最后一栋,小Q从来都没有见到这么多的楼,所以他想知道他在每栋楼的位置处能看到多少栋楼呢…...
FFmpeg5.0源码阅读——FFmpeg大体框架
摘要:前一段时间熟悉了下FFmpeg主流程源码实现,对FFmpeg的整体框架有了个大概的认识,因此在此做一个笔记,希望以比较容易理解的文字描述FFmpeg本身的结构,加深对FFmpeg的框架进行梳理加深理解,如果文章中有…...
【算法刷题之字符串篇】
目录 1.leetcode-344. 反转字符串(1)方法:双指针 2.leetcode-541. 反转字符串 II(1)方法一:模拟(2)方法二:双指针 3.leetcode-剑指 Offer 05. 替换空格(1&…...
js中forEach和map的区别:forEach不会改变原数组,而map会改变数组?错了错了
1.提出思考?forEach不会改变原数组,而map会改变数组? 看到掘金上一篇文章觉得很有意思:大致是描述一般面试官问js中forEach和map的区别?都会回答forEach不会改变原数组,而map会改变,我也一直对…...
深度对话:从底层看Sui设计理念及网络规模扩展
近日,我们采访了George Danezis以了解Sui的交易处理系统如何促成高性能网络。他是Mysten Labs的联合创始人和首席科学家(Sui的最初贡献者),也是伦敦大学学院(University College London,UCL)安全…...
【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...
国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...
uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖
在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...
tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
Pinocchio 库详解及其在足式机器人上的应用
Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...
