C#,《小白学程序》第十一课:阶乘(Factorial)的计算方法与代码
1 文本格式
/// <summary>
/// 阶乘的非递归算法
/// </summary>
/// <param name="a"></param>
/// <returns></returns>
private int Factorial_Original(int a)
{
int r = 1;
for (int i = a; i > 1; i--)
{
r = r * i;
}
return r;
}
/// <summary>
/// 阶乘的递归算法
/// 递归简单理解就是函数调用自己(当然参数不同哈!)
/// </summary>
/// <param name="a"></param>
/// <returns></returns>
private int Factorial(int a)
{
if (a > 1) return a * Factorial(a - 1);
else return 1;
}
/// <summary>
/// 《小白学程序》第十一课:阶乘(Factorial)的计算方法与代码
/// 阶乘是基斯顿·卡曼(Christian Kramp,1760~1826)于 1808 年发明的运算符号,是数学术语。
/// 一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。
/// 1808年,基斯顿·卡曼引进这个表示法。亦即 n! = 1×2×3×...×(n-1)×n。
/// 阶乘亦可以递归方式定义:
/// 0! = 1
/// n! = (n-1)! × n
///
/// 本节课接触了函数(阶乘函数)。
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
private void button11_Click(object sender, EventArgs e)
{
int n = 4;
StringBuilder sb = new StringBuilder();
sb.AppendLine("非递归算法:" + n + "! = " + Factorial_Original(n) + "<br>");
sb.AppendLine("递归算法:" + n + "! = " + Factorial(n) + "<br>");
webBrowser1.DocumentText = sb.ToString();
}
2 代码格式
/// <summary>
/// 阶乘的非递归算法
/// </summary>
/// <param name="a"></param>
/// <returns></returns>
private int Factorial_Original(int a)
{int r = 1;for (int i = a; i > 1; i--){r = r * i;}return r;
}/// <summary>
/// 阶乘的递归算法
/// 递归简单理解就是函数调用自己(当然参数不同哈!)
/// </summary>
/// <param name="a"></param>
/// <returns></returns>
private int Factorial(int a)
{if (a > 1) return a * Factorial(a - 1);else return 1;
}/// <summary>
/// 《小白学程序》第十一课:阶乘(Factorial)的计算方法与代码
/// 阶乘是基斯顿·卡曼(Christian Kramp,1760~1826)于 1808 年发明的运算符号,是数学术语。
/// 一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。
/// 1808年,基斯顿·卡曼引进这个表示法。亦即 n! = 1×2×3×...×(n-1)×n。
/// 阶乘亦可以递归方式定义:
/// 0! = 1
/// n! = (n-1)! × n
///
/// 本节课接触了函数(阶乘函数)。
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
private void button11_Click(object sender, EventArgs e)
{int n = 4;StringBuilder sb = new StringBuilder();sb.AppendLine("非递归算法:" + n + "! = " + Factorial_Original(n) + "<br>");sb.AppendLine("递归算法:" + n + "! = " + Factorial(n) + "<br>");webBrowser1.DocumentText = sb.ToString();
}

3 局限性
咱们尝试着计算其他数据的阶乘:
16! = 2004189184
17! = -288522240
可见,上面的算法无法计算超过 16 的阶乘!!!!
将数据类型改为 long 可以计算更大的阶乘。
private long Factorial(long a)
{if (a > 1) return a * Factorial(a - 1);else return 1;
}
20! = 2432902008176640000
21! = -4249290049419214848
超过 20 又不行了!
怎么办?
后面学习 大数的乘法,可计算很大数的阶乘。
4 512 阶乘
512! = 347728979313260536328304591754560471199225065564351457034247483155161041206635254347320985033950225364432243311021394545295001702070069013264153113260937941358711864044716186861040899557497361427588282356254968425012480396855239725120562512065555822121708786443620799246550959187232026838081415178588172535280020786313470076859739980965720873849904291373826841584712798618430387338042329771801724767691095019545758986942732515033551529595009876999279553931070378592917099002397061907147143424113252117585950817850896618433994140232823316432187410356341262386332496954319973130407342567282027398579382543048456876800862349928140411905431276197435674603281842530744177527365885721629512253872386613118821540847897493107398381956081763695236422795880296204301770808809477147632428639299038833046264585834888158847387737841843413664892833586209196366979775748895821826924040057845140287522238675082137570315954526727437094904914796782641000740777897919134093393530422760955140211387173650047358347353379234387609261306673773281412893026941927424000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
5 1024阶乘
1024! = 541852879605885728307692194468385473800155396353801344448287027068321061207337660373314098413621458671907918845708980753931994165770187368260454133333721939108367528012764993769768292516937891165755680659663747947314518404886677672556125188694335251213677274521963430770133713205796248433128870088436171654690237518390452944732277808402932158722061853806162806063925435310822186848239287130261690914211362251144684713888587881629252104046295315949943900357882410243934315037444113890806181406210863953275235375885018598451582229599654558541242789130902486944298610923153307579131675745146436304024890820442907734561827369030502252796926553072967370990758747793127635104702469889667961462133026237158973227857814631807156427767644064591085076564783456324457736853810336981776080498707767046394272605341416779125697733374568037475186676265961665615884681450263337042522664141862157046825684773360944326737493676674915098953768112945831626643856479027816385730291542667725665642276826058264393884514911976419675509290208592713156362983290989441052732125187249527501314071676405516936190781821236701912295767363117054126589929916482008515781751955466910902838729232224509906388638147771255227782631322385756948819393658889908993670874516860653098411020299853816281564334981847105777839534742531499622103488807584513705769839763993103929665046046121166651345131149513657400869056334867859885025601787284982567787314407216524272262997319791568603629406624740101482697559533155736658800562921274680657285201570401940692285557800611429055755324549794008939849146812639860750085263298820224719585505344773711590656682821041417265040658600683844945104354998812886801316551551714673388323340851763819713591312372548673734783537316341517369387565212899726597964903241208727348690699802996369265070088758384854547542272771024255049902319275830918157448205196421072837204937293516175341957775422453152442280391372407717891661203061040255830055033886790052116025408740454620938384367637886658769912790922323717371343176067483352513629123362885893627132294183565884010418727869354439077085278288558308427090461075019007184933139915558212752392329879780649639075333845719173822840501869570463626600235265587502335595489311637509380219119860471335771652403999403296360245577257963673286654348957325740999710567131623272345766761937651408103999193633908286420510098577454524068106897392493138287362226257920000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
相关文章:
C#,《小白学程序》第十一课:阶乘(Factorial)的计算方法与代码
1 文本格式 /// <summary> /// 阶乘的非递归算法 /// </summary> /// <param name"a"></param> /// <returns></returns> private int Factorial_Original(int a) { int r 1; for (int i a; i > 1; i--) { …...
MySQL 数据库常用命令大全(完整版)
文章目录 1. MySQL命令2. MySQL基础命令3. MySQL命令简介4. MySQL常用命令4.1 MySQL准备篇4.1.1 启动和停止MySQL服务4.1.2 修改MySQL账户密码4.1.3 MySQL的登陆和退出4.1.4 查看MySQL版本 4.2 DDL篇(数据定义)4.2.1 查询数据库4.2.2 创建数据库4.2.3 使…...
【数学】【书籍阅读笔记】【概率论】应用随机过程概率论模型导论 by Sheldon M.Ross 第一章 概率论引总结与习题题解 【更新中】
文章目录 前言1 第一章 概率论引论 总结1.1 样本空间与事件1.2 定义在事件上的概率1.3 条件概率1.4 独立事件 2 一些有用的重要结论/公式/例题3 重要例题例 1.11 3 习题题解题1题2 4 习题总结 前言 1 第一章 概率论引论 总结 第一章从事件的角度引出样本空间、事件、概率的基本…...
posexplode函数实战总结
目录 1、建表和准备数据 2、炸裂实践 3、错误炸裂方式 4、当字段类型为string,需要split一下 对单列array类型的字段进行炸裂时,可以使用lateral view explode。 对多列array类型的字段进行炸裂时,可以使用lateral view posexplode。 1…...
QTday3(对话框、发布软件、事件处理核心机制)
一、Xmind整理: 二、上课笔记整理: 1.消息对话框(QMessageBox) ①基于属性版本的API QMessageBox::QMessageBox( //有参构造函数名QMessageBox::Icon icon, //图标const Q…...
el-date-picker限制选择的时间范围
<el-date-pickersize"mini"v-model"dateTime"value-format"yyyy-MM-dd HH:mm:ss"type"datetimerange"range-separator"~"start-placeholder"开始日期"end-placeholder"结束日期":picker-options&quo…...
Scala中的Actor模型
Scala中的Actor模型 概念 Actor Model是用来编写并行计算或分布式系统的高层次抽象(类似java中的Thread)让程序员不必为多线程模式下共享锁而烦恼。Actors将状态和行为封装在一个轻量的进程/线程中,但是不和其他Actors分享状态,…...
Java使用pdfbox将pdf转图片
前言 目前比较主流的两种转pdf的方式,就是pdfbox和icepdf,两种我都尝试了下,icepdf解析出来有时候会出现中文显示不出来,网上的解决方式又特别麻烦,不是安装字体,就是重写底层类,所以我选择了p…...
大规模场景下对Istio的性能优化
简介 当前istio下发xDS使用的是全量下发策略,也就是网格里的所有sidecar(envoy),内存里都会有整个网格内所有的服务发现数据。这样的结果是,每个sidecar内存都会随着网格规模增长而增长。 Aeraki-mesh aeraki-mesh项目下有一个子项目专门用来…...
数字化新零售平台系统提供商,门店商品信息智慧管理-亿发进销存
传统的批发零售业务模式正面临着市场需求变化的冲击。用户日益注重个性化、便捷性和体验感,新兴的新零售模式迅速崛起,改变了传统的零售格局。如何在保持传统业务的基础上,变革发展,成为了业界亟需解决的问题。 在这一背景下&…...
postgresql-窗口函数
postgresql-窗口函数 简介窗口函数的定义分区选项(PARTITION BY)排序选项(ORDER BY)窗口选项(frame_clause) 聚合窗口函数排名窗口函数演示了 CUME_DIST 和 NTILE 函数 取值窗口函数 简介 常见的聚合函数&…...
Revit SDK 介绍:CreateAirHandler 创建户式风管机
前言 这个例子介绍如何通过 API 创建一个户式风管机族的内容,包含几何和接头。 内容 效果 核心逻辑 必须打开机械设备的族模板创建几何实体来表示风管机创建风机的接头 创建几何实体来表示风管机 例子中创建了多个拉伸,下面仅截取一段代码ÿ…...
微信小程序云开发-云函数发起https请求简易封装函数
一、前言 在日常的开发中,经常会遇到需要请求第三方API的情况,例如请求实名认证接口、IP转换地址接口等等。这些请求放在小程序前端的话,就需要把密钥放在客户端,在安全性上没这么高。 因此,一般是放在云函数端去访问…...
深入探索PHP编程:连接数据库的完整指南
深入探索PHP编程:连接数据库的完整指南 在现代Web开发中,与数据库进行交互是不可或缺的一部分。PHP作为一种强大的服务器端编程语言,提供了丰富的工具来连接和操作各种数据库系统。本篇教程将带您了解如何在PHP中连接数据库,执行…...
【Centos8配置节点免密登陆】
登录Centos8 配置免密登录 为什么需要配置免密登录,玩大数据,玩集群的朋友们,都需要使用RPC通讯,完成集群命令同步,数据操作通讯。要实现RPC通讯,就需要配置节点之间的免密登录。 # 配置登录秘钥 ssh-key…...
不可变集合、Lambda表达式、Stream流
不可变集合、Lambda表达式、Stream流 创建不可变集合 不能被修改的集合 应用场景 如果某个数据不能被修改,把它防御性的拷贝到不可变集合中是个很好的实践。 当集合对象被不可信的库调用时,不可变形式是安全的。 创建不可变集合 在List、Set、Map接口中…...
Three.js GLTF模型加载
在Three.js中,要加载三维模型文件,可以使用GLTF格式。GLTF是一种基于JSON的开放标准,用于3D模型的交换和运行时加载。本篇文章将详细讲解如何使用Three.js加载GLTF模型。 ## 1. 下载GLTF模型 在开始之前,请确保您已经有一个GLTF模…...
外包干了2个月,技术退步明显...
先说一下自己的情况,大专生,18年通过校招进入湖南某软件公司,干了接近4年的功能测试,今年年初,感觉自己不能够在这样下去了,长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能测试…...
java八股文面试[多线程]——主内存和工作内存的关系
JAVA内存模型(JMM)共享变量:如果一个变量在多个线程的工作内存中都存在副本,那么这个变量就是这几个线程的共享变量。 上面的工作内存其实是java内存模型抽象出来的概念,下面简要介绍一下java内存模型(JMM&…...
技术分享 | LSM,Linux 内核的安全防护盾
计算机安全是一个非常重要的概念和主题,它不仅仅可以保护用户个人信息和资产的安全,还可以影响到用户在使用过程中的体验;但同时,它也是一个很抽象的概念,关于其相关文献和资料不计其数,但它究竟是什么、包…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
mongodb源码分析session执行handleRequest命令find过程
mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...
安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...
C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...
HTML前端开发:JavaScript 常用事件详解
作为前端开发的核心,JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例: 1. onclick - 点击事件 当元素被单击时触发(左键点击) button.onclick function() {alert("按钮被点击了!&…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
技术栈RabbitMq的介绍和使用
目录 1. 什么是消息队列?2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...
【Go语言基础【12】】指针:声明、取地址、解引用
文章目录 零、概述:指针 vs. 引用(类比其他语言)一、指针基础概念二、指针声明与初始化三、指针操作符1. &:取地址(拿到内存地址)2. *:解引用(拿到值) 四、空指针&am…...
