当前位置: 首页 > news >正文

C#,《小白学程序》第十一课:阶乘(Factorial)的计算方法与代码

1 文本格式


/// <summary>
/// 阶乘的非递归算法
/// </summary>
/// <param name="a"></param>
/// <returns></returns>
private int Factorial_Original(int a)
{
    int r = 1;
    for (int i = a; i > 1; i--)
    {
        r = r * i;
    }
    return r;
}

/// <summary>
/// 阶乘的递归算法
/// 递归简单理解就是函数调用自己(当然参数不同哈!)
/// </summary>
/// <param name="a"></param>
/// <returns></returns>
private int Factorial(int a)
{
    if (a > 1) return a * Factorial(a - 1);
    else return 1;
}

/// <summary>
/// 《小白学程序》第十一课:阶乘(Factorial)的计算方法与代码
/// 阶乘是基斯顿·卡曼(Christian Kramp,1760~1826)于 1808 年发明的运算符号,是数学术语。
/// 一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。
/// 1808年,基斯顿·卡曼引进这个表示法。亦即 n! = 1×2×3×...×(n-1)×n。
/// 阶乘亦可以递归方式定义:
/// 0! = 1
/// n! = (n-1)! × n
/// 
/// 本节课接触了函数(阶乘函数)。
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
private void button11_Click(object sender, EventArgs e)
{
    int n = 4;

    StringBuilder sb = new StringBuilder();
    sb.AppendLine("非递归算法:" + n + "! = " + Factorial_Original(n) + "<br>");
    sb.AppendLine("递归算法:" + n + "! = " + Factorial(n) + "<br>");
    webBrowser1.DocumentText = sb.ToString();
}
 

2 代码格式


/// <summary>
/// 阶乘的非递归算法
/// </summary>
/// <param name="a"></param>
/// <returns></returns>
private int Factorial_Original(int a)
{int r = 1;for (int i = a; i > 1; i--){r = r * i;}return r;
}/// <summary>
/// 阶乘的递归算法
/// 递归简单理解就是函数调用自己(当然参数不同哈!)
/// </summary>
/// <param name="a"></param>
/// <returns></returns>
private int Factorial(int a)
{if (a > 1) return a * Factorial(a - 1);else return 1;
}/// <summary>
/// 《小白学程序》第十一课:阶乘(Factorial)的计算方法与代码
/// 阶乘是基斯顿·卡曼(Christian Kramp,1760~1826)于 1808 年发明的运算符号,是数学术语。
/// 一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。
/// 1808年,基斯顿·卡曼引进这个表示法。亦即 n! = 1×2×3×...×(n-1)×n。
/// 阶乘亦可以递归方式定义:
/// 0! = 1
/// n! = (n-1)! × n
/// 
/// 本节课接触了函数(阶乘函数)。
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
private void button11_Click(object sender, EventArgs e)
{int n = 4;StringBuilder sb = new StringBuilder();sb.AppendLine("非递归算法:" + n + "! = " + Factorial_Original(n) + "<br>");sb.AppendLine("递归算法:" + n + "! = " + Factorial(n) + "<br>");webBrowser1.DocumentText = sb.ToString();
}

3 局限性

咱们尝试着计算其他数据的阶乘:

16! = 2004189184

17! = -288522240

可见,上面的算法无法计算超过 16 的阶乘!!!!

将数据类型改为 long 可以计算更大的阶乘。

private long Factorial(long a)
{if (a > 1) return a * Factorial(a - 1);else return 1;
}

20! = 2432902008176640000

21! = -4249290049419214848

超过 20 又不行了!

怎么办?

后面学习 大数的乘法,可计算很大数的阶乘。

4 512 阶乘 

512! = 347728979313260536328304591754560471199225065564351457034247483155161041206635254347320985033950225364432243311021394545295001702070069013264153113260937941358711864044716186861040899557497361427588282356254968425012480396855239725120562512065555822121708786443620799246550959187232026838081415178588172535280020786313470076859739980965720873849904291373826841584712798618430387338042329771801724767691095019545758986942732515033551529595009876999279553931070378592917099002397061907147143424113252117585950817850896618433994140232823316432187410356341262386332496954319973130407342567282027398579382543048456876800862349928140411905431276197435674603281842530744177527365885721629512253872386613118821540847897493107398381956081763695236422795880296204301770808809477147632428639299038833046264585834888158847387737841843413664892833586209196366979775748895821826924040057845140287522238675082137570315954526727437094904914796782641000740777897919134093393530422760955140211387173650047358347353379234387609261306673773281412893026941927424000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

5 1024阶乘

1024! = 541852879605885728307692194468385473800155396353801344448287027068321061207337660373314098413621458671907918845708980753931994165770187368260454133333721939108367528012764993769768292516937891165755680659663747947314518404886677672556125188694335251213677274521963430770133713205796248433128870088436171654690237518390452944732277808402932158722061853806162806063925435310822186848239287130261690914211362251144684713888587881629252104046295315949943900357882410243934315037444113890806181406210863953275235375885018598451582229599654558541242789130902486944298610923153307579131675745146436304024890820442907734561827369030502252796926553072967370990758747793127635104702469889667961462133026237158973227857814631807156427767644064591085076564783456324457736853810336981776080498707767046394272605341416779125697733374568037475186676265961665615884681450263337042522664141862157046825684773360944326737493676674915098953768112945831626643856479027816385730291542667725665642276826058264393884514911976419675509290208592713156362983290989441052732125187249527501314071676405516936190781821236701912295767363117054126589929916482008515781751955466910902838729232224509906388638147771255227782631322385756948819393658889908993670874516860653098411020299853816281564334981847105777839534742531499622103488807584513705769839763993103929665046046121166651345131149513657400869056334867859885025601787284982567787314407216524272262997319791568603629406624740101482697559533155736658800562921274680657285201570401940692285557800611429055755324549794008939849146812639860750085263298820224719585505344773711590656682821041417265040658600683844945104354998812886801316551551714673388323340851763819713591312372548673734783537316341517369387565212899726597964903241208727348690699802996369265070088758384854547542272771024255049902319275830918157448205196421072837204937293516175341957775422453152442280391372407717891661203061040255830055033886790052116025408740454620938384367637886658769912790922323717371343176067483352513629123362885893627132294183565884010418727869354439077085278288558308427090461075019007184933139915558212752392329879780649639075333845719173822840501869570463626600235265587502335595489311637509380219119860471335771652403999403296360245577257963673286654348957325740999710567131623272345766761937651408103999193633908286420510098577454524068106897392493138287362226257920000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

相关文章:

C#,《小白学程序》第十一课:阶乘(Factorial)的计算方法与代码

1 文本格式 /// <summary> /// 阶乘的非递归算法 /// </summary> /// <param name"a"></param> /// <returns></returns> private int Factorial_Original(int a) { int r 1; for (int i a; i > 1; i--) { …...

MySQL 数据库常用命令大全(完整版)

文章目录 1. MySQL命令2. MySQL基础命令3. MySQL命令简介4. MySQL常用命令4.1 MySQL准备篇4.1.1 启动和停止MySQL服务4.1.2 修改MySQL账户密码4.1.3 MySQL的登陆和退出4.1.4 查看MySQL版本 4.2 DDL篇&#xff08;数据定义&#xff09;4.2.1 查询数据库4.2.2 创建数据库4.2.3 使…...

【数学】【书籍阅读笔记】【概率论】应用随机过程概率论模型导论 by Sheldon M.Ross 第一章 概率论引总结与习题题解 【更新中】

文章目录 前言1 第一章 概率论引论 总结1.1 样本空间与事件1.2 定义在事件上的概率1.3 条件概率1.4 独立事件 2 一些有用的重要结论/公式/例题3 重要例题例 1.11 3 习题题解题1题2 4 习题总结 前言 1 第一章 概率论引论 总结 第一章从事件的角度引出样本空间、事件、概率的基本…...

posexplode函数实战总结

目录 1、建表和准备数据 2、炸裂实践 3、错误炸裂方式 4、当字段类型为string&#xff0c;需要split一下 对单列array类型的字段进行炸裂时&#xff0c;可以使用lateral view explode。 对多列array类型的字段进行炸裂时&#xff0c;可以使用lateral view posexplode。 1…...

QTday3(对话框、发布软件、事件处理核心机制)

一、Xmind整理&#xff1a; 二、上课笔记整理&#xff1a; 1.消息对话框&#xff08;QMessageBox&#xff09; ①基于属性版本的API QMessageBox::QMessageBox( //有参构造函数名QMessageBox::Icon icon, //图标const Q…...

el-date-picker限制选择的时间范围

<el-date-pickersize"mini"v-model"dateTime"value-format"yyyy-MM-dd HH:mm:ss"type"datetimerange"range-separator"~"start-placeholder"开始日期"end-placeholder"结束日期":picker-options&quo…...

Scala中的Actor模型

Scala中的Actor模型 概念 Actor Model是用来编写并行计算或分布式系统的高层次抽象&#xff08;类似java中的Thread&#xff09;让程序员不必为多线程模式下共享锁而烦恼。Actors将状态和行为封装在一个轻量的进程/线程中&#xff0c;但是不和其他Actors分享状态&#xff0c;…...

Java使用pdfbox将pdf转图片

前言 目前比较主流的两种转pdf的方式&#xff0c;就是pdfbox和icepdf&#xff0c;两种我都尝试了下&#xff0c;icepdf解析出来有时候会出现中文显示不出来&#xff0c;网上的解决方式又特别麻烦&#xff0c;不是安装字体&#xff0c;就是重写底层类&#xff0c;所以我选择了p…...

大规模场景下对Istio的性能优化

简介 当前istio下发xDS使用的是全量下发策略&#xff0c;也就是网格里的所有sidecar(envoy)&#xff0c;内存里都会有整个网格内所有的服务发现数据。这样的结果是&#xff0c;每个sidecar内存都会随着网格规模增长而增长。 Aeraki-mesh aeraki-mesh项目下有一个子项目专门用来…...

数字化新零售平台系统提供商,门店商品信息智慧管理-亿发进销存

传统的批发零售业务模式正面临着市场需求变化的冲击。用户日益注重个性化、便捷性和体验感&#xff0c;新兴的新零售模式迅速崛起&#xff0c;改变了传统的零售格局。如何在保持传统业务的基础上&#xff0c;变革发展&#xff0c;成为了业界亟需解决的问题。 在这一背景下&…...

postgresql-窗口函数

postgresql-窗口函数 简介窗口函数的定义分区选项&#xff08;PARTITION BY&#xff09;排序选项&#xff08;ORDER BY&#xff09;窗口选项&#xff08;frame_clause&#xff09; 聚合窗口函数排名窗口函数演示了 CUME_DIST 和 NTILE 函数 取值窗口函数 简介 常见的聚合函数&…...

Revit SDK 介绍:CreateAirHandler 创建户式风管机

前言 这个例子介绍如何通过 API 创建一个户式风管机族的内容&#xff0c;包含几何和接头。 内容 效果 核心逻辑 必须打开机械设备的族模板创建几何实体来表示风管机创建风机的接头 创建几何实体来表示风管机 例子中创建了多个拉伸&#xff0c;下面仅截取一段代码&#xff…...

微信小程序云开发-云函数发起https请求简易封装函数

一、前言 在日常的开发中&#xff0c;经常会遇到需要请求第三方API的情况&#xff0c;例如请求实名认证接口、IP转换地址接口等等。这些请求放在小程序前端的话&#xff0c;就需要把密钥放在客户端&#xff0c;在安全性上没这么高。 因此&#xff0c;一般是放在云函数端去访问…...

深入探索PHP编程:连接数据库的完整指南

深入探索PHP编程&#xff1a;连接数据库的完整指南 在现代Web开发中&#xff0c;与数据库进行交互是不可或缺的一部分。PHP作为一种强大的服务器端编程语言&#xff0c;提供了丰富的工具来连接和操作各种数据库系统。本篇教程将带您了解如何在PHP中连接数据库&#xff0c;执行…...

【Centos8配置节点免密登陆】

登录Centos8 配置免密登录 为什么需要配置免密登录&#xff0c;玩大数据&#xff0c;玩集群的朋友们&#xff0c;都需要使用RPC通讯&#xff0c;完成集群命令同步&#xff0c;数据操作通讯。要实现RPC通讯&#xff0c;就需要配置节点之间的免密登录。 # 配置登录秘钥 ssh-key…...

不可变集合、Lambda表达式、Stream流

不可变集合、Lambda表达式、Stream流 创建不可变集合 不能被修改的集合 应用场景 如果某个数据不能被修改&#xff0c;把它防御性的拷贝到不可变集合中是个很好的实践。 当集合对象被不可信的库调用时&#xff0c;不可变形式是安全的。 创建不可变集合 在List、Set、Map接口中…...

Three.js GLTF模型加载

在Three.js中&#xff0c;要加载三维模型文件&#xff0c;可以使用GLTF格式。GLTF是一种基于JSON的开放标准&#xff0c;用于3D模型的交换和运行时加载。本篇文章将详细讲解如何使用Three.js加载GLTF模型。 ## 1. 下载GLTF模型 在开始之前&#xff0c;请确保您已经有一个GLTF模…...

外包干了2个月,技术退步明显...

先说一下自己的情况&#xff0c;大专生&#xff0c;18年通过校招进入湖南某软件公司&#xff0c;干了接近4年的功能测试&#xff0c;今年年初&#xff0c;感觉自己不能够在这样下去了&#xff0c;长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能测试…...

java八股文面试[多线程]——主内存和工作内存的关系

JAVA内存模型&#xff08;JMM&#xff09;共享变量&#xff1a;如果一个变量在多个线程的工作内存中都存在副本&#xff0c;那么这个变量就是这几个线程的共享变量。 上面的工作内存其实是java内存模型抽象出来的概念&#xff0c;下面简要介绍一下java内存模型&#xff08;JMM&…...

技术分享 | LSM,Linux 内核的安全防护盾

计算机安全是一个非常重要的概念和主题&#xff0c;它不仅仅可以保护用户个人信息和资产的安全&#xff0c;还可以影响到用户在使用过程中的体验&#xff1b;但同时&#xff0c;它也是一个很抽象的概念&#xff0c;关于其相关文献和资料不计其数&#xff0c;但它究竟是什么、包…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中&#xff0c;新增了一个本地验证码接口 /code&#xff0c;使用函数式路由&#xff08;RouterFunction&#xff09;和 Hutool 的 Circle…...

Linux 下 DMA 内存映射浅析

序 系统 I/O 设备驱动程序通常调用其特定子系统的接口为 DMA 分配内存&#xff0c;但最终会调到 DMA 子系统的dma_alloc_coherent()/dma_alloc_attrs() 等接口。 关于 dma_alloc_coherent 接口详细的代码讲解、调用流程&#xff0c;可以参考这篇文章&#xff0c;我觉得写的非常…...

C++ 类基础:封装、继承、多态与多线程模板实现

前言 C 是一门强大的面向对象编程语言&#xff0c;而类&#xff08;Class&#xff09;作为其核心特性之一&#xff0c;是理解和使用 C 的关键。本文将深入探讨 C 类的基本特性&#xff0c;包括封装、继承和多态&#xff0c;同时讨论类中的权限控制&#xff0c;并展示如何使用类…...

Ray框架:分布式AI训练与调参实践

Ray框架&#xff1a;分布式AI训练与调参实践 系统化学习人工智能网站&#xff08;收藏&#xff09;&#xff1a;https://www.captainbed.cn/flu 文章目录 Ray框架&#xff1a;分布式AI训练与调参实践摘要引言框架架构解析1. 核心组件设计2. 关键技术实现2.1 动态资源调度2.2 …...

项目进度管理软件是什么?项目进度管理软件有哪些核心功能?

无论是建筑施工、软件开发&#xff0c;还是市场营销活动&#xff0c;项目往往涉及多个团队、大量资源和严格的时间表。如果没有一个系统化的工具来跟踪和管理这些元素&#xff0c;项目很容易陷入混乱&#xff0c;导致进度延误、成本超支&#xff0c;甚至失败。 项目进度管理软…...