【操作记录】pytorch_geometric安装方法
pytorch_geometric安装方法
github地址
主要不要直接pip install安装,会由于依赖无法安装而失败

点击here手动安装依赖
选择对应的pytorch版本,我的是Win10 Python3.8.3+Pytorch1.8.1+CUDA10.2

手动下载四个依赖包本地安装:

主要不要直接:pip install torch_geometric
这样会安装最新的torch_geometric,后面在使用时候会出现Pytorch AttributeError: module 'torch' has no attribute 'sparse_scs'
这里手动指定低版本安装:
pip install torch_geometric==2.0.4
接下来就可以跑一个图卷积神经网络试试:
import torch
import networkx as nx
import matplotlib.pyplot as plt
from torch_geometric.datasets import KarateClub
from torch_geometric.utils import to_networkxdataset = KarateClub()def visualize_graph(G, color):plt.figure(figsize=(7,7))plt.xticks([])plt.yticks([])nx.draw_networkx(G, pos=nx.spring_layout(G, seed=42), with_labels=False,node_color=color, cmap="Set2")plt.show()def visualize_embedding(h, color, epoch=None, loss=None):plt.figure(figsize=(7,7))plt.xticks([])plt.yticks([])h = h.detach().cpu().numpy()plt.scatter(h[:, 0], h[:, 1], s=140, c=color, cmap="Set2")if epoch is not None and loss is not None:plt.xlabel(f'Epoch: {epoch}, Loss: {loss.item():.4f}', fontsize=16)plt.show()G = to_networkx(data, to_undirected=True)
visualize_graph(G, color=data.y)
import torch
from torch.nn import Linear
from torch_geometric.nn import GCNConv
class GCN(torch.nn.Module):def __init__(self):super().__init__()torch.manual_seed(1234)self.conv1 = GCNConv(dataset.num_features, 4) # 只需定义好输入特征和输出特征即可self.conv2 = GCNConv(4, 4)self.conv3 = GCNConv(4, 2)self.classifier = Linear(2, dataset.num_classes)def forward(self, x, edge_index):h = self.conv1(x, edge_index) # 输入特征与邻接矩阵(注意格式,上面那种)h = h.tanh()h = self.conv2(h, edge_index)h = h.tanh()h = self.conv3(h, edge_index)h = h.tanh() # 分类层out = self.classifier(h)return out, hmodel = GCN()
_, h = model(data.x, data.edge_index)
print(f'Embedding shape: {list(h.shape)}')visualize_embedding(h, color=data.y)
Embedding shape: [34, 2]
训练模型
import timemodel = GCN()
criterion = torch.nn.CrossEntropyLoss() # Define loss criterion.
optimizer = torch.optim.Adam(model.parameters(), lr=0.01) # Define optimizer.def train(data):optimizer.zero_grad() out, h = model(data.x, data.edge_index) #h是两维向量,主要是为了咱们画个图 loss = criterion(out[data.train_mask], data.y[data.train_mask]) # semi-supervisedloss.backward() optimizer.step() return loss, hfor epoch in range(401):loss, h = train(data)if epoch % 10 == 0:visualize_embedding(h, color=data.y, epoch=epoch, loss=loss)time.sleep(0.3)
相关文章:
【操作记录】pytorch_geometric安装方法
pytorch_geometric安装方法 github地址 主要不要直接pip install安装,会由于依赖无法安装而失败 点击here手动安装依赖 选择对应的pytorch版本,我的是Win10 Python3.8.3Pytorch1.8.1CUDA10.2 手动下载四个依赖包本地安装: 主要不要直接&am…...
EventSystem 事件系统
EventSystem 事件系统 事件系统在开发中必不可少事件系统使用观察者模式可以极大程度降低程序的耦合,之前的文章也讲过事件系统但是不够高效简洁,如何轻便高效优雅的实现一个事件呢?依然基于之前的AssemblyManager 程序集管理器和SingletonS…...
2.2 Vector<T> 动态数组(模板语法)
C数据结构与算法 目录 本文前驱课程 1 C自学精简教程 目录(必读) 2 动态数组 Vector(难度1) 其中,2 是 1 中的一个作业。2 中详细讲解了动态数组实现的基本原理。 本文目标 1 学会写基本的C类模板语法; 2 为以后熟练使用 S…...
dockerfile 例子(二)
Dockerfile由一行一行的命令语句组成,#开头的为注释行。Dockerfile文件内容分为四个部分:基础镜像信息、维护者信息、镜像操作指令以及容器启动执行指令。 接下来给大家列出Dockerfile中主要命令的说明。 FROM,指定所创建镜像的基础镜像。 …...
openssh---Windows下git安装配置gitlab
安装openssh 1. 专业版Win10/11默认自带,可以查看是否开启 1. Get-WindowsCapability -Online | Where-Object Name -like OpenSSH* 2. Add-WindowsCapability -Online -Name OpenSSH.Client~~~~0.0.1.0 3. Add-WindowsCapability -Online -Name OpenSSH.Serve…...
vscode宏键绑定
开发语言php 实现输入[ 得到 [];的效果 [win]ctrlp,[mac]superp 输入>keyboard 选择 在json文件里增加(目前有缺陷,sublime的设置是比较完美的.或者phpstorm默认不需要配置): {"key": "[","command": "editor.action.insertSnippet&…...
外贸企业如何借助CRM提升企业发展?
外贸企业竞争激烈,提高自身竞争力,扩大海外业务市场,是每个外贸企业的目标。为了实现这一目标,不少外贸企业借助CRM系统,优化业务流程,管理维护客户,从而实现可持续发展。那么,外贸企…...
初步了解ES
一、ES基础查询 1、es基础查询 1.1 准备数据 # 准备数据 PUT test_index/_doc/1 {"name":"顾老二","age":30,"from": "gu","desc": "皮肤黑、武器长、性格直","tags": ["黑", &…...
Linux基础(三)
一.系统基本优化 关闭selinux:getenforce 查看selinux状态setenforce 0 临时关闭vim /etc/sysconfig/selinux 永久关闭SELINUXdisabled 关闭防火墙:systemctl stop firewalld 临时关闭防火墙systemctl disable firewalld 永久关闭防火墙sys…...
python函数调用的四种方式
第一种:参数按顺序从第一个参数往后排#标准调用 def normal_invoke(x, y):print("--normal_invoke:--" )print("x is %d" %x )print("y is %d" %y) # 标准调用 normal_invoke(1, 2) 运行结果: --normal_invoke:-- x is 1 …...
如何将两个pdf合并成一个?pdf合并技巧分享
在日常工作过程当中,我们经常需要处理一些文件,而文件的处理往往是琐碎的,想要提高工作效率,需要选择一些合适的方法,并掌握一定的技巧,那么,如何将两个pdf合并成一个?pdf合并技巧有哪些呢?接…...
qt : day 3
1.完成登录框的按钮操作,并在登录成功后进行界面跳转 ------------------------------------------------------------------ .pro ------------------------------------------------------------------ QT core gui texttospeech greaterThan(QT_MAJOR_V…...
flutter高德地图大头针
1、效果图 2、pub get #地图定位 amap_flutter_map: ^3.0.0 amap_flutter_location: ^3.0.0 3、上代码 import dart:async; import dart:io;import package:amap_flutter_location/amap_flutter_location.dart; import package:amap_flutter_location/amap_location_option…...
【线性代数】矩阵求导的本质与分子布局、分母布局的本质(矩阵求导——本质篇)
矩阵求导的本质与分子布局、分母布局的本质(矩阵求导——本质篇) 说在前面一. 函数与标量、向量、矩阵二. 矩阵求导的本质三. 矩阵求导结果的布局四. 分子布局、分母布局的本质五. 向量变元的实值标量函数 说在前面 我将严谨地说明矩阵求导的本质与分子布…...
快速了解状态管理库Pinia及其使用方法
目录 1.pinia是什么 2.为什么要使用pinia 3.pinia的优点 4.pinia在项目中使用 ①创建一个使用pinia的Vue3项目 ②在页面使用store 1.pinia是什么 Pinia 起源于一次探索 Vuex 下一个迭代的实验,如果你学过Vue2,那么你一定使用过Vuex。Vuex在Vue2中主…...
scratch绘制同心圆 2023年5月中国电子学会图形化编程 少儿编程 scratch编程等级考试四级真题和答案解析
目录 scratch绘制同心圆 一、题目要求 1、准备工作 2、功能实现 二、案例分析 <...
【LeetCode】3. 无重复字符的最长子串
3. 无重复字符的最长子串(中等) 方法:滑动窗口 哈希表 思路 这道题主要用到思路是:滑动窗口 什么是滑动窗口? 其实就是一个队列,比如例题中的 abcabcbb,进入这个队列(窗口)为 ab…...
苹果macOS 14开发者预览版Beta 7发布 新增超过100款视频壁纸和屏保
8 月 31 日,苹果向 Mac 电脑用户推送了 macOS 14 开发者预览版 Beta 7 更新(内部版本号:23A5337a),本次更新距离上次发布隔了 8 天。 苹果发布 Beta 7 更新的同时,还发布了第 6 个公测版,正式版…...
Redis 7 第五讲 事务、管道、发布订阅 过渡篇
事务 理论 可以一次执行多个命令,本质是一组命令的集合。一个事务中的所有命令都会序列化,按顺序地串行化执行而不会被其它命令插入,不许加塞 一个队列中,一次性、顺序性、排他性的执行一系列命令 Redis事务 VS 关系型数据库事务…...
[SpringBoot3]视图技术Thymeleaf
七、视图技术Thymeleaf Thymeleaf是一个表现层的模板引擎,一般被使用在Web环境中,它可以处理HTML、XML、JS等文档,简单来说,它可以将JSP作为Java Web应用的表现层,有能力展示与处理数据。这样,同一个模板文…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...
tomcat入门
1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...
Sklearn 机器学习 缺失值处理 获取填充失值的统计值
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 使用 Scikit-learn 处理缺失值并提取填充统计信息的完整指南 在机器学习项目中,数据清…...
GraphQL 实战篇:Apollo Client 配置与缓存
GraphQL 实战篇:Apollo Client 配置与缓存 上一篇:GraphQL 入门篇:基础查询语法 依旧和上一篇的笔记一样,主实操,没啥过多的细节讲解,代码具体在: https://github.com/GoldenaArcher/graphql…...
软件工程 期末复习
瀑布模型:计划 螺旋模型:风险低 原型模型: 用户反馈 喷泉模型:代码复用 高内聚 低耦合:模块内部功能紧密 模块之间依赖程度小 高内聚:指的是一个模块内部的功能应该紧密相关。换句话说,一个模块应当只实现单一的功能…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现指南针功能
指南针功能是许多位置服务应用的基础功能之一。下面我将详细介绍如何在HarmonyOS 5中使用DevEco Studio实现指南针功能。 1. 开发环境准备 确保已安装DevEco Studio 3.1或更高版本确保项目使用的是HarmonyOS 5.0 SDK在项目的module.json5中配置必要的权限 2. 权限配置 在mo…...
快速排序算法改进:随机快排-荷兰国旗划分详解
随机快速排序-荷兰国旗划分算法详解 一、基础知识回顾1.1 快速排序简介1.2 荷兰国旗问题 二、随机快排 - 荷兰国旗划分原理2.1 随机化枢轴选择2.2 荷兰国旗划分过程2.3 结合随机快排与荷兰国旗划分 三、代码实现3.1 Python实现3.2 Java实现3.3 C实现 四、性能分析4.1 时间复杂度…...
