当前位置: 首页 > news >正文

Matlab(数值微积分)

目录

1.多项式微分与积分

1.1 微分

1.2 多项式微分

1.3 如何正确的使用Matlab?

1.3.1 Matlab表达多项式

1.3.2  polyval() 多项式求值

 1.3.3 polyder()多项式微分

1.4 多项式积分

1.4.1 如何正确表达

1.4.2 polyint() 多项式积分

2.数值的微分与积分

2.1 数值微分

 2.2 diff() 计算差值

  2.3 误差的准确性

 2.4 二阶、三阶导数

 2.5 数值积分

 2.5.1中点规则

 2.5.2 梯形规则(trapz)

2.5.3 辛普森积分法

2.5.4 三种积分方式比较

3.函数句柄

3.1 创建函数句柄

 3.1.1 有参数的句柄函数

3.1.2 无参数的句柄函数

3.1.3 无参且无括号

3.2 匿名函数

3.3 错误示范

3.4 integral() 数值积分

3.4.1 一级积分

3.4.2 integral2() 二级积分

3.4.3 integral3() 三级积分


1.多项式微分与积分

1.1 微分

  • 函数f(x)导数写为:F'(x)或者 \frac{df(x)}{dx}
  • 函数f(x)关于x的变化率

f (x0) 表示点x0处曲线相切的直线的系数。

1.2 多项式微分

对于一个多项式:f(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+...+a_{1}x+a_{0}   来说,其微分多项式为:

f(x)=a_{n}nx^{n-1}+a_{n-1}(n-1)x^{n-2}+...+2a_{2}x+a_{1}

1.3 如何正确的使用Matlab?

1.3.1 Matlab表达多项式

f(x)=x^{3}-2x-5  

在上式中,我们用Matlab应该怎么进行表示(多项式在Matlab中被表示为行向量)

>> p=[1 0 -2 -5]p =1     0    -2    -5

1.3.2  polyval() 多项式求值

语法y=polyval(p,x)

y= polyval(p,x) 计算多项式 p 在 x 的每个点处的值。参数 p 是长度为 n+1 的向量,其元素是 n 次多项式的系数(降幂排序):

p(x)=p_{1}x^{n}+p_{2}x^{n-1}+...+p_{n-1}x+p_{n}+1

示例1:

计算多项式 p(x)=3x^2+2x+1在点 x=5、7 、9 处的值。

>> p = [3 2 1];
x = [5 7 9];
y = polyval(p,x)y =86   162   262

 示例2:

f(x)=9x^{3}-5x^{2}+3x+7   (-2<=x<=5) 

对该多项式进行画图求值

>> a = [9,-5,3,7]; x = -2:0.01:5;
f = polyval(a,x);
plot(x,f,'LineWidth', 2);%设置线条粗度
xlabel('x轴'); ylabel('f(x)');%设置xy轴名称
set(gca, 'FontSize', 14)%设置字体大小

 1.3.3 polyder()多项式微分

语法一:k=polyder(p)

k=polyder(p)返回的p中的系数表示的多项式的导数  k(x)=\frac{d}{dx}p(x)

示例:

创建一个向量来表示多项式 p(x)=3x^5−2x^3+x+5。

p = [3 0 -2 0 1 5];

 使用polyder对多项式进行求导,结果为: q(x)=15x^{4}-6x^{2}+1

q = polyder(p)
q = 1×515     0    -6     0     1

 语法二:k= polyder(a,b) 返回多项式 a 和 b 的乘积的导数  k(x)=\frac{d}{dx}[a(x)b(x)]

示例:

创建两个向量来表示多项式 a(x)=x^4−2x^3+11 和 b(x)=x^2−10x+15。

a = [1 -2 0 0 11];
b = [1 -10 15];
q = polyder(a,b)
q = 1×66   -60   140   -90    22  -110
最后的结果为: 

语法三:[q,d] = polyder(a,b) 返回多项式 a 和 b 的商的导数 \frac{q(x)}{d(x)}=\frac{d}{dx}[\frac{a(x)}{b(x)}]

示例:

创建两个向量来表示商中的多项式    \frac{x^{4}-3x^{2}-1}{x+4}

p = [1 0 -3 0 -1];
v = [1 4];
[q,d] = polyder(p,v)
q = 1×53    16    -3   -24     1d = 1×31     8    16

 结果为:

\frac{q(x)}{d(x)}=\frac{3x^{4}+16x^{3}-3x^{2}-24x+1}{x^{2}+8x+16}

1.4 多项式积分

对于一个多项式:f(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+...+a_{1}x+a_{0}

 积分多项式为: \int f(x)=\frac{1}{n+1}a_{n}x^{n+1}+\frac{1}{n}a_{n-1}x^{n}+...+a_{0}x+k

1.4.1 如何正确表达

1.4.2 polyint() 多项式积分

语法:q=polyint(p,k) 如果只有的一个参数p,默认k是0,使用积分常量k返回p中的系数所表示的多项积分

示例:

对两个多项式的乘积求积分  I=\int_{0}^{2}(x^{5}-x^{3}+1)(x^{2}+1)dx

  • 创建向量来表示多项式
p = [1 0 -1 0 0 1];
v = [1 0 1];
  •  多项式相乘,并使用积分常量k=3对所生成的表达式求积分
k = 3;
q = polyint(conv(p,v),k)
q = 1×90.1250         0         0         0   -0.2500    0.3333         0    1.0000    3.0000
  •  通过在积分范围上计算q来求解I的值
a = 0;
b = 2;
I = diff(polyval(q,[a b]))
I = 32.6667

2.数值的微分与积分

2.1 数值微分

  • 最简单的方法:有限差分近似法
  • 计算x附近的割线   f'(x_{0})=\lim_{h \to0 } \frac{f((x_{0}+h)-f(x_{0}))}{h}  

 2.2 diff() 计算差值

diff() 计算向量中相邻元素之间的差值

x = [1 2 5 2 1];
diff(x)

>> x = [1 2 5 2 1];
diff(x)ans =1     3    -3    -1

 示例:

求出两点之间的斜率

>> x = [1 2]; y = [5 7];
slope = diff(y)./diff(x) %y的变化量/x的变化量slope =2

  2.3 误差的准确性

 f'(x_{0})=\lim_{h \to0 } \frac{f((x_{0}+h)-f(x_{0}))}{h}  当f(x)=sin(x)   h=0.1、0.01、0.001s时误差有什么变化?

当h=0.1时

>> x0 = pi/2; h = 0.1;
x = [x0 x0+h];
y = [sin(x0) sin(x0+h)];
m = diff(y)./diff(x)m =-0.0500

当h=0.01时:

>> x0 = pi/2; h = 0.01;
x = [x0 x0+h];
y = [sin(x0) sin(x0+h)];
m = diff(y)./diff(x)m =-0.0050

当h=0.001时:

>> 
x0 = pi/2; h = 0.001;
x = [x0 x0+h];
y = [sin(x0) sin(x0+h)];
m = diff(y)./diff(x)m =-5.0000e-04

由分析得:所以当h->0时,误差越小

g = colormap(lines); hold on;
for i=1:4
x = 0:power(10, -i):pi;
y = sin(x); m = diff(y)./diff(x);
plot(x(1:end-1), m, 'Color', g(i,:));%每次微分,系数的个数少1
end
hold off;
set(gca, 'XLim', [0, pi/2]); set(gca, 'YLim', [0, 1.2]);
set(gca, 'FontSize', 18); set(gca, 'FontName', 'symbol');
set(gca, 'XTick', 0:pi/4:pi/2);
set(gca, 'XTickLabel', {'0', 'p/4', 'p/2'});
h = legend('h=0.1','h=0.01','h=0.001','h=0.0001');
set(h,'FontName', 'Times New Roman'); box on;

 2.4 二阶、三阶导数

f(x)=x^{3}     (-2<=x<=2)

>> x = -2:0.005:2; y = x.^3;
m = diff(y)./diff(x);
m2 = diff(m)./diff(x(1:end-1));
plot(x,y,x(1:end-1),m,x(1:end-2),m2);%每次导数系数减1
xlabel('x', 'FontSize', 18);
ylabel('y', 'FontSize', 18);
legend('f(x) =x^3','f''(x)','f''''(x)');
set(gca, 'FontSize', 18);

 2.5 数值积分

s=\int_{a}^{b}f(x)d(x)\approx \sum_{i=0}^{n}f(x_{i})\int_{a}^{b}L_{i}(x)dx

  • 求积法——用有限集点逼近积分

 2.5.1中点规则

 示例:

我们通过积分可以求得:

A=\int_{0}^{2}4x^{3}dx=x^{4}|_{0}^{2}=(2)^{4}-(0)^{4}=16

但是我们通过中点积分可得:

>> h = 0.05; x = 0:h:2;
midpoint = (x(1:end-1)+x(2:end))./2;
y = 4*midpoint.^3;
s = sum(h*y)s =15.9950

解释:

midpoint = (x(1:end-1)+x(2:end))./2;

 2.5.2 梯形规则(trapz)

 A=\int_{0}^{2}4x^{3}dx=x^{4}|_{0}^{2}=(2)^{4}-(0)^{4}=16

>> h = 0.05; x = 0:h:2; y = 4*x.^3;
s = h*trapz(y)s =16.0100

我们也可以自定义该函数:

h = 0.05; x = 0:h:2; y = 4*x.^3;
trapezoid = (y(1:end-1)+y(2:end))/2;
s = h*sum(trapezoid)s =16.0100

2.5.3 辛普森积分法

 A=\int_{0}^{2}4x^{3}dx=x^{4}|_{0}^{2}=(2)^{4}-(0)^{4}=16


>> h = 0.05; x = 0:h:2; y = 4*x.^3;
s = h/3*(y(1)+2*sum(y(3:2:end-2))+...
4*sum(y(2:2:end))+y(end))s =16

2.5.4 三种积分方式比较

由分析易得: 辛普森积分法误差最小

3.函数句柄

       函数句柄是一种存储指向函数的关联关系的Matlab数据类型,间接调用函数使您在调用函数时无需考虑调用位置,函数句柄的典型用法包括:

  • 将一个函数传递到另一个函数(通常称为复合函数)
  • 指定回调函数
  • 构造以内联方式定义而非存储在程序文件(匿名函数)中的函数句柄
  • 从主函数外调用局部函数

查看h是否是函数句柄

isa(h,'function_handle')

3.1 创建函数句柄

通过在函数名称前添加一个 @ 符号来为函数创建句柄。

f = @myfunction;

 3.1.1 有参数的句柄函数

使用句柄调用函数的方式与直接调用函数一样,例如:

function y = computeSquare(x)
y = x.^2;
end

创建句柄并调用该函数以计算 4 的平方。

f = @computeSquare;
a = 4;
b = f(a)
b =16

3.1.2 无参数的句柄函数

如果该函数不需要任何输入,则您可以使用空括号调用该函数,例如:

h = @ones;
a = h()
a =1

3.1.3 无参且无括号

如果不使用括号,则该赋值会创建另一个函数句柄

a = h
a = @ones

3.2 匿名函数

        您可以创建指向匿名函数的句柄。匿名函数是基于单行表达式的 MATLAB 函数,不需要程序文件。构造指向匿名函数的句柄,方法是定义 anonymous_function 函数主体,以及指向匿名函数 arglist 的以逗号分隔的输入参数列表。语法为:

h = @(arglist)anonymous_function

例如,创建一个指向用于计算平方数的匿名函数的句柄 sqr,并使用其句柄调用该匿名函数。

sqr = @(n) n.^2;
x = sqr(3)
x =9

3.3 错误示范

function [y] = xy_plot(input,x)
% xy_plot receives the handle of a function
% and plots that function of x
y = input(x); plot(x,y,'r--');
xlabel('x'); ylabel('function(x)');
end

>> xy_plot(sin,0:0.01:2*pi)
错误使用 sin
输入参数的数目不足。

       调用参数的时候,如果该参数也是一个函数,这个时候直接将函数当成参数输入进去是不妥的,会直接报错,这个时候我们就需要句柄

>> 
xy_plot(@sin,0:0.01:2*pi)ans =列 1 至 110    0.0100    0.0200    0.0300    0.0400    0.0500    0.0600    0.0699    0.0799    0.0899    0.0998列 12 至 220.1098    0.1197    0.1296    0.1395    0.1494    0.1593    0.1692    0.1790    0.1889    0.1987    0.2085列 23 至 330.2182    0.2280    0.2377    0.2474    0.2571    0.2667    0.2764    0.2860    0.2955    0.3051    0.3146
...

3.4 integral() 数值积分

3.4.1 一级积分

\int_{0}^{2}\frac{1}{x^{3}-2x-5}dx

我们通过句柄该怎么去解决呢?

>> y = @(x) 1./(x.^3-2*x-5);
integral(y,0,2)ans =-0.4605

3.4.2 integral2() 二级积分


>> f = @(x,y) y.*sin(x)+x.*cos(y);
integral2(f,pi,2*pi,0,pi)ans =-9.8696

3.4.3 integral3() 三级积分


>> f = @(x,y,z) y.*sin(x)+z.*cos(y);
integral3(f,0,pi,0,1,-1,1)ans =2.0000

相关文章:

Matlab(数值微积分)

目录 1.多项式微分与积分 1.1 微分 1.2 多项式微分 1.3 如何正确的使用Matlab? 1.3.1 Matlab表达多项式 1.3.2 polyval() 多项式求值 1.3.3 polyder()多项式微分 1.4 多项式积分 1.4.1 如何正确表达 1.4.2 polyint() 多项式积分 2.数值的微分与积分 2.1 数值微分 2…...

【数据结构回顾】

数据结构回顾 一、单链表二、单循环链表 一、单链表 #include <stdio.h> #include <stdlib.h>typedef struct Node {int data;Node *next; }Node;Node* initList() {Node *list (Node*)malloc(sizeof(Node));list->data 0;list->next NULL;return list; }…...

QT创建可移动点类

效果如图所示&#xff1a; 创建新类MovablePoint&#xff0c;继承自QWidget. MovablePoint头文件: #ifndef MOVABLEPOINT_H #define MOVABLEPOINT_H#include <QWidget> #include <QPainter> #include <QPaintEvent> #include <QStyleOption> #includ…...

Flutter启动页

效果图 import dart:async; import package:flutter/cupertino.dart; import package:flutter/material.dart; import jumpPage.dart;class TransitPage extends StatefulWidget {const TransitPage({super.key});overrideState<TransitPage> createState() > _Trans…...

读word模板批量生成制式文件

文章目录 1、Maven依赖2、.docx或.doc格式的word模板准备3、读word模板&#xff0c;批量替换代码域&#xff0c;生成文件&#xff0c;demo4、结果展示 1、Maven依赖 <dependency><groupId>fr.opensagres.xdocreport</groupId><artifactId>fr.opensagre…...

Node.js crypto模块 加密算法

背景 微信小程序调用飞蛾热敏纸打印机&#xff0c;需要进行参数sig签名校验&#xff0c;使用的是sha1进行加密 // 通过crypto.createHash()函数&#xff0c;创建一个hash实例&#xff0c;但是需要调用md5&#xff0c;sha1&#xff0c;sha256&#xff0c;sha512算法来实现实例的…...

Win11 避坑安装WSL2 Ubuntu22.04

开始之前以管理员身份打开 PowerShell 启用适用于 Linux 的 Windows 子系统 需要先启用“适用于 Linux 的 Windows 子系统”可选功能&#xff0c;然后才能在 Windows 上安装 Linux 分发。 PowerShell然后输入以下命令&#xff1a; dism.exe /online /enable-feature /featur…...

ESP8266+继电器+MQTT+VUE 实现远程开关灯

超详细教程 – ESP8266继电器MQTTVUE 实现远程开关灯 超详细教程 – ESP8266继电器MQTTVUE 实现远程开关灯 接线图 NC&#xff08;通常闭合&#xff09;与COM&#xff08;公共&#xff09;、NO&#xff08;通常开放&#xff09;与COM 是继电器引脚的不同配置&#xff0c;用于不…...

Android中级——四大组件工作过程

四大组件工作过程 ActivityServicestartService()过程bindService()过程 BroadcastReceiver注册过程发送和接收过程 ContentProvider Activity startActivity()最终都会调用到startActivityForResult() public void startActivityForResult(RequiresPermission Intent intent…...

【RabbitMQ】RabbitMQ 服务无法启动。系统出错。发生系统错误 1067。进程意外终止。

问题描述 RabbitMQ 服务无法启动。 rabbitmq-service.bat startRabbitMQ 服务正在启动 . RabbitMQ 服务无法启动。系统出错。发生系统错误 1067。进程意外终止。原因分析 RabbitMQ和Erlang版本不匹配。 解决方案 查询并安装RabbitMQ版本对应Erlang版本 https://www.rabbitm…...

如何理解attention中的Q、K、V?

y直接用torch实现一个SelfAttention来说一说&#xff1a; 1、首先定义三哥线性变换&#xff0c;query&#xff0c;key以及value&#xff1a; class BertSelfAttention(nn.Module):self.query nn.Linear(config.hidden_size, self.all_head_size)#输入768&#xff0c;输出768…...

Redis----取代RabbitMq 和 Kafka的解决方案

背景 已知rabbitmq和kafka作为消息中间件来给程序之间增加异步消息传递功能&#xff0c;这两个中间件都是专业的&#xff0c;功能也很强&#xff0c;但是有的时候过于复杂&#xff0c;对于只有一组消费者的消息队列&#xff0c;使用Redis 就可以轻松搞定。 异步消息队列 读者…...

动态规划之连续乘积最大子数组 连续和最大子数组

一. 连续和最大子数组 给你一个整数数组 nums &#xff0c;请你找出一个具有最大和的连续子数组&#xff08;子数组最少包含一个元素&#xff09;&#xff0c;返回其最大和。 子数组 是数组中的一个连续部分。 示例 1&#xff1a; 输入&#xff1a;nums [-2,1,-3,4,-1,2,1,-5,…...

keil在点击debug无法运行(全速运行)

1、今天发现我之前可以debug的程序&#xff0c;在板子上无法debug了&#xff0c;打断点完全没用 2、换了电脑&#xff0c;带板子过去也这样&#xff0c;之前可以运行的代码都debug不了 3、按照网上的方法&#xff0c;都不行&#xff0c;全速运行&#xff0c;单步执行都是灰色…...

go语言-协程

mOS结构体 每一种操作系统不同的线程信息 g给g0栈给g0协程内存中分配的地址&#xff0c;记录函数跳转信息&#xff0c; 单线程循环 0.x版本 1.0版本 多线程循环 操作系统并不知道Goroutine的存在 操作系统线程执行一个调度循环&#xff0c;顺序执行Goroutine 调度循环非常…...

如何伪造http头,让后端认为是本地访问

0x00 前言 这个知识点纯粹就是为了ctf准备的&#xff0c;很少有系统会出现这种情况。 0x01 正文 1.host头 如果后端从host取值来判断是否是本地就可以通过此方法进行绕过&#xff1a; host: 127.0.0.12.X-Forwarded-For X-Forwarded-For&#xff08;XFF&#xff09;是用来…...

视频剪辑音效处理软件有哪些?视频剪辑软件那个好用

音效是视频剪辑的重要部分&#xff0c;能起到画龙点睛的作用。在短视频平台中&#xff0c;一段出彩的音效能将原本平平无奇的视频变得生动有趣。那么&#xff0c;视频剪辑音效处理软件有哪些&#xff1f;本文会给大家介绍好用的音效处理软件&#xff0c;同时也会介绍视频剪辑音…...

搭建STM32F407的Freertos系统(基于STM32CubeMX)

本人长期开发Linux、Windows上应用软件&#xff0c;一直以来MCU开发有所接触&#xff0c;但较少&#xff08;最近项目需要&#xff0c;小公司么&#xff0c;都得会&#xff0c;被逼的&#xff09;&#xff0c;好在有STM32CubeMX这样工具&#xff0c;貌似就是我想要的工具。 本次…...

vite 配置自动补全文件的后缀名

vite 不建议自动补全&#xff0c;文件的后缀名的 const Home ()>import("/views/Home.vue");文件是必须要加上 .vue 的后缀名的 如果 想要像 webpack 一样的不用写&#xff0c; 可以在vite.config.js中配置如下就可以了...

基于Spring Boot的人才公寓管理系统设计与实现(Java+spring boot+MySQL)

获取源码或者论文请私信博主 演示视频&#xff1a; 基于Spring Boot的人才公寓管理系统设计与实现&#xff08;Javaspring bootMySQL&#xff09; 使用技术&#xff1a; 前端&#xff1a;html css javascript jQuery ajax thymeleaf 微信小程序 后端&#xff1a;Java spring…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架&#xff0c;用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录&#xff0c;以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06&#xff08;十亿美元&#xff09;。漏洞扫描服务市场行业预计将从 2024 年的 3.48&#xff08;十亿美元&#xff09;增长到 2032 年的 9.54&#xff08;十亿美元&#xff09;。预测期内漏洞扫描服务市场 CAGR&#xff08;增长率&…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程

STM32F1 本教程使用零知标准板&#xff08;STM32F103RBT6&#xff09;通过I2C驱动ICM20948九轴传感器&#xff0c;实现姿态解算&#xff0c;并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化&#xff0c;适合嵌入式及物联网开发者。在基础驱动上新增…...

全面解析数据库:从基础概念到前沿应用​

在数字化时代&#xff0c;数据已成为企业和社会发展的核心资产&#xff0c;而数据库作为存储、管理和处理数据的关键工具&#xff0c;在各个领域发挥着举足轻重的作用。从电商平台的商品信息管理&#xff0c;到社交网络的用户数据存储&#xff0c;再到金融行业的交易记录处理&a…...

WebRTC调研

WebRTC是什么&#xff0c;为什么&#xff0c;如何使用 WebRTC有什么优势 WebRTC Architecture Amazon KVS WebRTC 其它厂商WebRTC 海康门禁WebRTC 海康门禁其他界面整理 威视通WebRTC 局域网 Google浏览器 Microsoft Edge 公网 RTSP RTMP NVR ONVIF SIP SRT WebRTC协…...