代码随想录 - Day30 - 修剪二叉树,转换二叉树 + 二叉树总结
代码随想录 - Day30 - 修剪二叉树,转换二叉树 + 二叉树总结
669. 修剪二叉搜索树
有点像是删除二叉搜索树的变形,改变了删除条件而已。
递归法:
class Solution:def trimBST(self, root: Optional[TreeNode], low: int, high: int) -> Optional[TreeNode]:if not root:return rootif root.val < low: # 当前节点小于low,不用再看其左子树,遍历其右子树即可right = self.trimBST(root.right, low, high)return rightif root.val > high: # 当前节点大于high,不用再看其右子树,遍历其左子树即可left = self.trimBST(root.left, low, high)return leftroot.left = self.trimBST(root.left, low, high) # root.left接入符合条件的左孩子root.right = self.trimBST(root.right, low, high) # root.right接入符合条件的右孩子return root
迭代法:
'''
在剪枝的时候,可以分为三步:
将root移动到[L, R] 范围内,注意是左闭右闭区间
剪枝左子树
剪枝右子树
'''
class Solution:def trimBST(self, root: Optional[TreeNode], low: int, high: int) -> Optional[TreeNode]:if not root:return root# 处理头节点,把头结点放到[low, high]范围内while root and (root.val < low or root.val > high):if root.val < low: # 小于low往右走root = root.rightelse: # 大于high往左走root = root.leftcurleft, curright = root, root# 处理左孩子元素小于low的情况while curleft:while curleft.left and curleft.left.val < low:curleft.left = curleft.left.rightcurleft = curleft.left# 处理右孩子元素大于high的情况while curright:while curright.right and curright.right.val > high:curright.right = curright.right.leftcurright = curright.rightreturn root
108. 将有序数组转换为二叉搜索树
对于奇数长度的数组可以直接取中点,对于偶数长度的数组则需要用mid = int(left + ((right - left) / 2))。
中点作为根节点,左右两侧则分别为左子树和右子树,依次进行递归遍历。
class Solution:# 左闭右闭区间[left, right]def traversal(self, nums, left, right):if left > right:return Nonemid = int(left + ((right - left) / 2)) # 防止越界root = TreeNode(nums[mid])root.left = self.traversal(nums, left, mid - 1)root.right = self.traversal(nums, mid + 1, right)return rootdef sortedArrayToBST(self, nums: List[int]) -> Optional[TreeNode]:root = self.traversal(nums, 0, len(nums) - 1)return root
迭代法:用队列模拟递归过程
from collections import dequeclass Solution:def sortedArrayToBST(self, nums: List[int]) -> TreeNode:if len(nums) == 0:return Noneroot = TreeNode(0) # 初始根节点nodeQue = deque() # 放遍历的节点leftQue = deque() # 保存左区间下标rightQue = deque() # 保存右区间下标nodeQue.append(root) # 根节点入队列leftQue.append(0) # 0为左区间下标初始位置rightQue.append(len(nums) - 1) # len(nums) - 1为右区间下标初始位置while nodeQue:curNode = nodeQue.popleft()left = leftQue.popleft()right = rightQue.popleft()mid = left + (right - left) // 2curNode.val = nums[mid] # 将mid对应的元素给中间节点if left <= mid - 1: # 处理左区间curNode.left = TreeNode(0)nodeQue.append(curNode.left)leftQue.append(left)rightQue.append(mid - 1)if right >= mid + 1: # 处理右区间curNode.right = TreeNode(0)nodeQue.append(curNode.right)leftQue.append(mid + 1)rightQue.append(right)return root
538. 把二叉搜索树转换为累加树
题目中的累加是右中左的顺序进行累加,从最大的节点值累加到最小的节点值。
所以要反中序遍历该二叉树,然后顺序累加。
需要一个pre指针记录当前节点的前一个节点,这样才能方便累加。
class Solution:def traversal(self, cur): # 右中左遍历if not cur: # 终止条件returnself.traversal(cur.right) # 右cur.val += self.pre # 中self.pre = cur.valself.traversal(cur.left) # 左def convertBST(self, root: Optional[TreeNode]) -> Optional[TreeNode]:self.pre = 0 # 记录前一个节点的数值self.traversal(root)return root
或者写成这样也可以:
class Solution:def __init__(self): # 记录前一个节点的数值self.pre = 0def convertBST(self, root: Optional[TreeNode]) -> Optional[TreeNode]:if not root: # 终止条件returnself.convertBST(root.right) # 右root.val += self.pre # 中self.pre = root.valself.convertBST(root.left) # 左return root
迭代法:
class Solution:def convertBST(self, root: Optional[TreeNode]) -> Optional[TreeNode]:if not root: return rootstack = []result = []cur = rootpre = 0 # 记录前一个节点的数值while cur or stack:if cur: # 右stack.append(cur)cur = cur.rightelse: cur = stack.pop() # 中cur.val+= prepre = cur.valcur =cur.left # 左return root
总结
二叉树这块的题目大部分可以通过递归和迭代两种方式来解决。
当遇到二叉搜索树时,可以利用其特性来简化代码。
对不同题目选择合适的遍历方式:
- 涉及到二叉树的构造,无论普通二叉树还是二叉搜索树一定前序,都是先构造中节点。
- 求普通二叉树的属性,一般是后序,一般要通过递归函数的返回值做计算。
- 求二叉搜索树的属性,一定是中序了,要不白瞎了有序性了。
二叉树的遍历方式(递归和迭代)+层序遍历,必须要掌握。
要知道深度优先(前中后序遍历)和广度优先(层序遍历)对应哪些遍历方式。
关键是要掌握解决问题的方法,熟悉代码,理解题目。
二叉树的题就先做到这里,今天再看一下回溯算法的基础,明天开始做题。
相关文章:
代码随想录 - Day30 - 修剪二叉树,转换二叉树 + 二叉树总结
代码随想录 - Day30 - 修剪二叉树,转换二叉树 二叉树总结 669. 修剪二叉搜索树 有点像是删除二叉搜索树的变形,改变了删除条件而已。 递归法: class Solution:def trimBST(self, root: Optional[TreeNode], low: int, high: int) -> O…...
[音视频] sdl 渲染到外部创建的窗口上
API SDL_CreateWindowFrom # 在外部窗口上创建窗口 其他 api 调用,按照之前的 代码 ui.setupUi(this); sdl_width ui.label->width(); sdl_height ui.label->height(); SDL_Init(SDL_INIT_VIDEO); sdl_win SDL_CreateWindowFrom((void*)ui.label->wi…...
MongoDB之索引
大数据量使用全集合查询,这是非常影响性能的,而索引可以加快查询效率,提高性能,所以这方面的知识也是必不可少的。 查询分析 explain()可以帮助我们分析查询语句性能。 语法 db.collection.find(...).explain()案例及结果 案…...
Redis的介绍
Redis的架构介绍如下: 1. 概述 Redis是一个基于内存的高性能NoSQL键值数据库,支持网络访问和持久化特性。 2. 功能架构 Redis提供字符串、哈希、列表、集合、有序集合、位数组等多种数据结构,支持事务、Lua脚本、发布订阅、流水线等功能。 3. 技术架构 Redis使用单线程的…...
一文了解Docker的用法
一、什么是Docker Docker 是一个开源的应用容器引擎,基于 Go 语言 并遵从 Apache2.0 协议开源。 Docker 可以让开发者打包他们的应用以及依赖包到一个轻量级、可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化。 容器是…...
netcat的使用
目录 netcat简介 nc的使用场景 nc实现通信 创建一个服务端 创建一个客户端 具体案例 环境 win10在具体路径下执行命令 win7在具体路径下执行命令 netcat文件传输 nc文件传输的利用 服务器等待接收文件 客户端向服务器发送文件 服务器向连接的客户端发送文件 客户…...
深度学习推荐系统(二)Deep Crossing及其在Criteo数据集上的应用
深度学习推荐系统(二)Deep Crossing及其在Criteo数据集上的应用 在2016年, 随着微软的Deep Crossing, 谷歌的Wide&Deep以及FNN、PNN等一大批优秀的深度学习模型被提出, 推荐系统全面进入了深度学习时代, 时至今日,…...
前端常用 Vue3 项目组件大全
Vue.js 是一种流行的 JavaScript 前端框架,它简化了构建交互式的用户界面的过程。Vue3 是 Vue.js 的最新版本,引入了许多新的特性和改进。在 Vue3 中,组件是构建应用程序的核心部分,它们可以重用、组合和嵌套。下面是一些前端开发…...
javaee spring 静态代理
静态代理 package com.test.staticProxy;public interface IUsersService {public void insert(); }package com.test.staticProxy;//目标类 public class UsersService implements IUsersService {Overridepublic void insert() {System.out.println("添加用户");…...
Java 包装类和Arrays类(详细解释)
目录 包装类 作用介绍 包装类的特有功能 Arrays类 Arrays.fill() Arrays.toString() Arrays.sort() 升序排序 降序排序 Arrays.equals() Arrays.copyOf() Arrays.binarySearch() 包装类 作用介绍 包装类其实就是8种基本数据类型对应的引用类型。 基本数据类型引用…...
elementUi中的el-table表格的内容根据后端返回的数据用不同的颜色展示
效果图如下: 首先 首先:需要在表格行加入 <template slot-scope"{ row }"> </template>标签 <el-table-column prop"usable" align"center" label"状态" width"180" ><templ…...
在访问一个网页时弹出的浏览器窗口,如何用selenium 网页自动化解决?
相信大家在使用selenium做网页自动化时,会遇到如下这样的一个场景: 在你使用get访问某一个网址时,会在页面中弹出如上图所示的弹出框。 首先想到是利用Alert类来处理它。 然而,很不幸,Alert类处理的结果就是没有结果…...
python 基于http方式与基于redis方式传输摄像头图片数据的实现和对比
目录 0. 需求1. 基于http方式传递图片数据1.1 发送图片数据1.2 接收图片数据并可视化1.3 测试 2. 基于redis方式传递图片数据2.1 发送图片数据2.2 接收图片数据并可视化2.3 测试 3. 对比 0. 需求 在不同进程或者不同语言间传递摄像头图片数据,比如从java实现的代码…...
快速使用Git完整开发
本系列有两篇文章: 一是本篇,主要说明了关于Git工具的基础使用,包含三板斧(git add、git commit、git push)、Git基本配置、版本回退、分支管理、公钥与私钥、远端仓库和远端分支、忽略文件、命令别名、标签等内容。二…...
鲁棒优化入门(7)—Matlab+Yalmip两阶段鲁棒优化通用编程指南(下)
0.引言 上一篇博客介绍了使用Yalmip工具箱求解单阶段鲁棒优化的方法。这篇文章将和大家一起继续研究如何使用Yalmip工具箱求解两阶段鲁棒优化(默认看到这篇博客时已经有一定的基础了,如果没有可以看看我专栏里的其他文章)。关于两阶段鲁棒优化与列与约束生成算法的原…...
Docker技术--Docker中的网络问题
1.docker中的网络通信 如果想要弄清楚docker中的网络通信问题,其实需要弄清楚这几个问题就可以:容器与容器之间的通信、容器与外部网络之间的通信、外部网络与容器之间的通信。 -a:容器与容器之间的通信,如下所示: 在默认情况下,docker使用网桥(Bridge模式)与NAT通信。这…...
ASP.NET Core 中的两种 Web API
ASP.NET Core 有两种创建 RESTful Web API 的方式: 基于 Controller,使用完整的基于ControllerBase的基类定义接口endpoints。基于 Minimal APIs,使用Lambda表达式定义接口 endpoints。 基于 Controller 的 Web API 可以使用构造函数注入&a…...
【线程池】如何判断线程池中的任务执行完毕(三)
目录 前言 1. isTerminated()方法 2. awaitTermination()方法 3.getTaskCount()方法和executor.getCompletedTaskCount()方法结合使用 4.使用CountDownlatch类 前言 通常我们使用线程池的时候,系统处于运行的状态,而线程池本身就是主要为了线程复用&…...
Qt/C++编写视频监控系统81-Onvif报警抓图和录像并回放
一、前言 视频监控系统中的图文警情模块,是通过Onvif协议的事件订阅拿到的,通过事件订阅后,设备的各种报警事件比如入侵报警/遮挡报警/越界报警/开关量报警等,触发后都会主动往订阅者发送,而且一般都是会发送两次&…...
浅谈安防视频监控平台EasyCVR视频汇聚平台对于夏季可视化智能溺水安全告警平台的重要性
每年夏天都是溺水事故高发的时期,许多未成年人喜欢在有水源的地方嬉戏,这导致了悲剧的发生。常见的溺水事故发生地包括水库、水坑、池塘、河流、溪边和海边等场所。 为了加强溺水风险的提示和预警,完善各类安全防护设施,并及时发现…...
树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...
DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
【JVM】- 内存结构
引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...
IP如何挑?2025年海外专线IP如何购买?
你花了时间和预算买了IP,结果IP质量不佳,项目效率低下不说,还可能带来莫名的网络问题,是不是太闹心了?尤其是在面对海外专线IP时,到底怎么才能买到适合自己的呢?所以,挑IP绝对是个技…...
