当前位置: 首页 > news >正文

保姆级教程之SABO-VMD-SVM的西储大学轴承诊断

之前写过一篇优化核极限学习机的轴承诊断,今天再出一期基于SVM的轴承诊断。

依旧是包含了从数据处理,到减法优化器SABO算法优化VMD参数,再到支持向量机的故障诊断,实现故障诊断的全流程,其他类型的故障诊断均可参考此流程。数据替换十分简单!

友情提示:对于刚接触故障诊断的新手来说,这篇文章信息量可能有点大,大家可以收藏反复阅读。即便有些内容本篇文章没讲出来,但其中的一些跳转链接,也完全把故障诊断这个故事讲清楚了。

与上一期文章相似,先给大家看看文件夹目录,都是作者精心整理过的。

585aebaec6283834ab9a22894429a138.png

最后一个压缩包是有关VMD画图的程序。考虑到大家可能会用到VMD的相关作图,包络谱,频谱图等,作者在这里也一并附在代码中了。这部分大家需要自行更改数据!也就是作者比较火的文章之一,这里边提到的所有代码:VMD分解,matlab代码,包络线,包络谱,中心频率,峭度值,能量熵,样本熵,模糊熵,排列熵,多尺度排列熵,西储大学数据集为例

如图所示,本次内容一共做了三件事情:

一,对官方下载的西储大学数据进行处理,步骤如下:

1.一共加载10种数据,然后取每个数据的DE_time(%DE是驱动端数据 FE是风扇端数据 BA是加速度数据 选择其中一个就行)

2.设置滑动窗口w,每个数据的故障样本点个数s,每个故障类型的样本量m

3.将所有的数据滑窗完毕之后,综合到一个data变量中

有关西储大学数据的处理之前有文章也讲过,大家可以看这篇文章:西储大学轴承诊断数据处理,matlab免费代码获取

图中的1750,1772,1790是西储大学轴承的转速,大家做诊断的时候,选择其中一个即可,即选同一转速下的不同故障进行诊断更有意义!

二,对第一步数据处理得到的数据进行特征提取

选取五种适应度函数进行优化,这里大家可以自行决定选哪一个!以此确定VMD的最佳k和α参数。五种适应度函数分别是:最小包络熵,最小样本熵,最小信息熵,最小排列熵,排列熵/互信息熵,代码中可以一键切换。至于应该选择哪种作为自己的适应度函数,大家可以看这篇文章。VMD为什么需要进行参数优化,最小包络熵/样本熵/排列熵/信息熵,适应度函数到底该选哪个

老粉应该知道,之前也推过一篇文章,就是关于西储大学特征提取的,但当时作者懒,没有写一个大循环,需要大家针对每种类型的数据依次提取。这次,作者把特征提取写了一个大循环,方便一键特征提取,大家也可以很简单的更换自己的数据!

至于特征提取的具体原理,也在这篇文章进行过详细介绍,大家可以跳转阅读。简单来说,就是利用包络熵最小的准则把每个样本的最佳IMF分量提取出来,然后对其9个指标进行计算,分别是:均值,方差,峰值,峭度,有效值,峰值因子,脉冲因子,波形因子,裕度因子。然后用这9个指标构建每个样本的特征向量。

另外本篇文章采用了2023年一个较新且效率较高的智能算法---减法优化器(SABO),对VMD参数进行了优化,找到了每个故障类型的最佳IMF分量,并利用包络熵最小的准则,提取出了最佳的IMF分量。

三,采用支持向量机实现故障分类

本文所选SVM是从官网下载的libsvm-3.3版本,作者已编译好,大家可以直接运行。如果想自行编译的童鞋可以从网站下载:https://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html,编译步骤可以参考https://blog.csdn.net/qq_42457960/article/details/109275227

本文采用了网格搜索机制,并采用5折交叉验证,对SVM的惩罚因子c和gamma参数进行寻优。

结果展示

3202358019606bb596aa541822bab935.png

混淆矩阵图,有的文章会采用这种图:

2d53bc76d039979affe5c8a5c41ba781.png

这里不得不说一句,官方给出的libSVM包,准确率就是嘎嘎高!

部分代码

数据处理代码:

clc;
clear;
addpath(genpath(pwd));
%DE是驱动端数据 FE是风扇端数据 BA是加速度数据 选择其中一个就行
load 97.mat     %正常
load 107.mat    %直径0.007英寸,转速为1750时的  内圈故障
load 120.mat    %直径0.007,转速为1750时的  滚动体故障
load 132.mat    %直径0.007,转速为1750时的  外圈故障
load 171.mat    %直径0.014英寸,转速为1750时的  内圈故障
load 187.mat    %直径0.014英寸,转速为1750时的  滚动体故障
load 199.mat    %直径0.014英寸,转速为1750时的  外圈故障
load 211.mat   %直径0.021英寸,转速为1750时的  内圈故障
load 224.mat  %直径0.021英寸,转速为1750时的  滚动体故障
load 236.mat  %直径0.021英寸,转速为1750时的 外圈故障
w=1000;                  % w是滑动窗口的大小1000
s=2048;                  % 每个故障表示有2048个故障点
m = 10;  %每种故障有120个样本
D0=[];
for i =1:mD0 = [D0,X097_DE_time(1+w*(i-1):w*(i-1)+s)];
end
D0 = D0';

SABO优化VMD参数并特征提取的代码:

%%  此程序运行需要很长的时间!!
% vmddata.mat就是最终特征提取的结果!%% 以最小包络熵、最小样本熵、最小信息熵、最小排列熵,排列熵/互信息熵,为目标函数(任选其一),采用SABO算法优化VMD,求取VMD最佳的两个参数
clear
clc
close all
addpath(genpath(pwd))
xz = 5;  %xz, 选择1,以最小包络熵为适应度函数,
% 选择2,以最小样本熵为适应度函数,
% 选择3,以最小信息熵为适应度函数,
% 选择4,以最小排列熵为适应度函数,
% 选择5,以复合指标:排列熵/互信息熵为适应度函数。
if xz == 1  fobj=@EnvelopeEntropyCost;          %最小包络熵
elseif xz == 2fobj=@SampleEntropyCost;            %最小样本熵
elseif xz == 3  fobj=@infoEntropyCost;              %最小信息熵
elseif xz == 4fobj=@PermutationEntropyCost;       %最小排列熵
elseif xz == 5fobj=@compositeEntropyCost;       %复合指标:排列熵/互信息熵
end
load data_total_1797.mat   %这里选取转速为1797的10种故障,大家也可以选取其他类型的数据
D=2;             % 优化变量数目
lb=[100 3];      % 下限值,分别是a,k
ub=[2500 10];        % 上限值
T=20;       % 最大迭代数目
N=15;        % 种群规模
vmddata = [];
for i=1:10   %因为有十种故障状态disp(['正在对第',num2str(i),'个故障类型的数据进行VMD优化……请耐心等待!'])every_data = data(1+120*(i-1):120*i,:);  %一种状态是120个样本,每次选120个样本进行VMD优化和特征提取da = every_data(1,:);  %从当前状态的数据中任选一组数据进行VMD优化即可。[SABOBest_score,SABOBest_pos,Bestidx,SABO_curve] = SABO(N,T,lb,ub,D,fobj,da');display(['第',num2str(i),'个故障类型数据的最佳VMD参数是:', num2str(fix(SABOBest_pos)),'最佳IMF分量是:IMF',num2str(Bestidx)]);  %输出最佳位置%% 以下为将最佳的a,k,idx回带VMD中,并进行9种时域指标特征提取bbh = fix(SABOBest_pos);%最佳位置取整new_data = tezhengtiqu(bbh(1),bbh(2),Bestidx,every_data);  %将优化得到的两个参数和最小适应度的索引值带回VMD中,提取得到当前状态的特征向量vmddata =  [vmddata;new_data];  %将每个状态提取得到的特征向量都放在一起
endsave vmddata.mat vmddata  %将提取的特征向量保存为mat文件
%% 删除路径,以免被其他函数混淆
rmpath(genpath(pwd))

SVM诊断的代码:

%% 初始化
clear
close all
clc
warning off
% 数据读取
addpath(genpath(pwd));
load vmddata.mat  %加载处理好的特征数据
data = vmddata;
% 数据载入bv = 120;    %每种状态数据有120组
% 加标签值
hhh = size(data,2);
for i=1:size(data,1)/bvdata(1+bv*(i-1):bv*i,hhh+1)=i;
end
input=data(:,1:hhh);
output =data(:,end);
jg = bv;   %每组120个样本
tn = 90;    %选前tn个样本进行训练
input_train = []; output_train = [];
input_test = []; output_test = [];
for i = 1:max(data(:,end))input_train=[input_train;input(1+jg*(i-1):jg*(i-1)+tn,:)];output_train=[output_train;output(1+jg*(i-1):jg*(i-1)+tn,:)];input_test=[input_test;input(jg*(i-1)+tn+1:i*jg,:)];output_test=[output_test;output(jg*(i-1)+tn+1:i*jg,:)];
end
input_train = input_train'; 
input_test = input_test';
%归一化
[inputn_train,inputps]=mapminmax(input_train);inputn_train = inputn_train';
[inputn_test,inputtestps]=mapminmax('apply',input_test,inputps); inputn_test =inputn_test';
[c,g] = meshgrid(-10:0.5:10,-10:0.5:10);  %调整间距,可以搜索的更加精细
[m,n] = size(c);
cg = zeros(m,n);
eps = 10^(-4);
v = 5;  %采用5折交叉验证
bestacc = 0;

代码获取

完整代码获取,点击下方卡片,后台回复关键词:

SVM诊断

相关文章:

保姆级教程之SABO-VMD-SVM的西储大学轴承诊断

之前写过一篇优化核极限学习机的轴承诊断,今天再出一期基于SVM的轴承诊断。 依旧是包含了从数据处理,到减法优化器SABO算法优化VMD参数,再到支持向量机的故障诊断,实现故障诊断的全流程,其他类型的故障诊断均可参考此流…...

指向任意节点的带环链表

🌈图示指向任意节点的带环链表 如图: 🌈快慢指针法判断链表是否带环 🌟思路:快指针fast一次走2步,慢指针slow一次走1步,fast先进环在换中运动,随后slow进入环。两指针每同时移动…...

应用于伺服电机控制、 编码器仿真、 电动助力转向、发电机、 汽车运动检测与控制的旋变数字转换器MS5905P

MS5905P 是一款 12bit 分辨率的旋变数字转换器。 片上集成正弦波激励电路,正弦和余弦允许输入峰峰值 幅度为 2.3V 到 4.0V ,可编程激励频率为 10kHz 、 12kHz 、 15kHz 、 20kHz 。 转换器可并行或串行输出角度 和速度对应的数字量。 MS5905…...

Ansible学习笔记(持续更新)

Ansible学习目录 1.自动化运维1.1 企业实际应用场景1.1.1 Dev开发环境1.1.2 测试环境1.1.3 发布环境1.1.4 生产环境1.1.5 灰度环境 1.2 程序发布1.3 自动化运维应用场景1.4 常用自动化运维工具 2.Ansible介绍和架构2.1 Ansible特性2.2 Ansible架构2.2.1 Ansible主要组成部分2.2…...

CCF HPC China2023|澎峰科技:使能先进计算,赋能行业应用

CCF HPC China2023圆满落幕! 桂秋八月,为期三天的中国高性能计算领域最高规格盛会——2023CCF全球高性能计算学术年会(HPC China)在青岛红岛国际展览中心圆满落幕。行业超算大咖、顶级学界精英、先锋企业领袖参会者齐聚山东青岛&a…...

【FlowDroid】一、处理流程学习

FlowDroid 一、处理流程学习 下载配置源码概况代码逻辑分析analyzeAPKFilerunInfoflowprocessEntryPointcalculateCallbacks(sourcesAndSinks)再次回到processEntryPoint 自己做一些笔记 下载配置 参照我前面的文章可以使用FlowDroid安装初体验 为了看代码了解FlowDroid如何处…...

MyBatis——MyBatis插件原理

摘要 本博文主要介绍MyBatis插件机原理,帮助大家更好的理解和学习MyBatis。 一、插件机制概述 MyBatis 允许你在已映射语句执行过程中的某一点进行拦截调用。默认情况下,MyBatis允许使用插件来拦截的方法调用包括: Executor (update, que…...

简易虚拟培训系统-UI控件的应用5

目录 Toggle控件简介 示例-使用Toggle组实现主轴速度选择 本篇介绍UI控件Toggle,尝试一个小示例-使用单选框实现速度的选择控制。 Toggle控件简介 1. Toggle的结构如下:最重要的Toggle组件挂在Toggle节点上,下面的Image组件用于显示单选框…...

Lnmp架构

关闭防火墙 安装依赖包 yum -y install pcre-devel zlib-devel gcc gcc-c make 创建运行用户、组 编译安装Nginx 让系统识别nginx的操作命令 添加Nginx系统服务 vim /lib/systemd/system/nginx.service 编译安装mysql 安装Mysql环境依赖包 创建运行用户 编译安装 cd /opt …...

es5的实例__proto__(原型链) prototype(原型对象) {constructor:构造函数}

现在看这张图开始变得云里雾里,所以简单回顾一下 prototype 的基本内容,能够基本读懂这张图的脉络。 先介绍一个基本概念: function Person() {}Person.prototype.name KK;let person1 new Person();在上面的例子中, Person …...

Oracle DBlink使用方法

DBlink作用:在当前数据库中访问另一个数据库中的表中的数据 create public database link dblink名称 connect to 对方数据库用户名 identified by 对方数据库用户密码 using (DESCRIPTION (ADDRESS_LIST (ADDRESS (PROTOCOL TCP)(HOST 要连接的数据库所在服务…...

UE4 植物生长

这个可以改变SplineMesh朝向...

企业应用系统 PHP项目支持管理系统Dreamweaver开发mysql数据库web结构php编程计算机网页

一、源码特点 PHP 项目支持管理系统是一套完善的web设计系统 应用于企业项目管理,从企业内部的各个业务环境总体掌握,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。 php项目支撑管理系统2 二、功能介绍 (1)权限管理&#xff1…...

微服务通信[HTTP|RPC同步通信、MQ异步通信]

概念 A服务调用B服务,B服务调C服务,C服务调D服务,即微服务之间的通信(也可以叫微服务之间的调用) HTTP同步通信 一种轻量级的通信协议,常用于在不同的微服务之间进行通信,也是最简单的通信方式使用REST ful为开发规范,将服务对外暴露的HTTP调用方式为REST API(如GET…...

C语言模拟最简单的计算机

C语言模拟最简单的计算机 以下内容参考南大“计算机系统基础”实验:不停计算的机器 概述 如下面的伪代码所示,计算机运行程序的过程为取指令–>运行指令–>更新PC的值。 while (1) {从PC指示的存储器位置取出指令;执行指令;更新PC; }取指(inst…...

c++图论免费ppt,简单深度理解图论

本篇博文想分享一个ppt,是帮助大家简单深度理解c图论. 作者承诺:分享的东西没有病毒,是资料。 分享的东西一个是ppt,ppt里面是150页的,里面将带领大家简单深度理解c图论,还有一个就是里面例题的数据,大家可以按照数据…...

xml中in的使用

目录 一、简介 二、使用 1、参数为list 2、参数为Array 3、参数为Map XML中大于、小于、不等于符号使用 一、简介 在xml中使用in查询需要使用foreach标签 <foreach item"item" collection"list" index"index" open"(" sep…...

Unity生命周期函数

1、Awake 当对象&#xff08;自己这个类对象&#xff0c;就是这个脚本&#xff09;被创建时 才会调用该生命周期函数 类似构造函数的存在 我们可以在一个类对象创建时进行一些初始化操作 2、OnEnable 失活激活&#xff08;这个勾&#xff09; 想要当一个对象&#xff08;游戏…...

【OpenCV入门】第六部分——腐蚀与膨胀

文章结构 腐蚀膨胀开运算闭运算形态学方法梯度运算顶帽运算黑帽运算 腐蚀 腐蚀操作可以让图像沿着自己的边界向内收缩。OpenCV通过”核“来实现收缩计算。“核”在形态学中可以理解为”由n个像素组成的像素块“&#xff0c;像素块包含一个核心&#xff08;通常在中央位置&…...

[C++] STL_list常用接口的模拟实现

文章目录 1、list的介绍与使用1.1 list的介绍1.2 list的使用 2、list迭代器3、list的构造4、list常用接口的实现4.1 list capacity4.2 插入删除、交换、清理4.2.1 insert任意位置插入4.2.2 push_front头插4.2.3 push_back尾插4.2.4 erase任意位置删除4.2.5 pop_front头删4.2.6 …...

idea大量爆红问题解决

问题描述 在学习和工作中&#xff0c;idea是程序员不可缺少的一个工具&#xff0c;但是突然在有些时候就会出现大量爆红的问题&#xff0c;发现无法跳转&#xff0c;无论是关机重启或者是替换root都无法解决 就是如上所展示的问题&#xff0c;但是程序依然可以启动。 问题解决…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

laravel8+vue3.0+element-plus搭建方法

创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

抽象类和接口(全)

一、抽象类 1.概念&#xff1a;如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象&#xff0c;这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法&#xff0c;包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中&#xff0c;⼀个类如果被 abs…...

Python竞赛环境搭建全攻略

Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型&#xff08;算法、数据分析、机器学习等&#xff09;不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...

JS红宝书笔记 - 3.3 变量

要定义变量&#xff0c;可以使用var操作符&#xff0c;后跟变量名 ES实现变量初始化&#xff0c;因此可以同时定义变量并设置它的值 使用var操作符定义的变量会成为包含它的函数的局部变量。 在函数内定义变量时省略var操作符&#xff0c;可以创建一个全局变量 如果需要定义…...

2025年低延迟业务DDoS防护全攻略:高可用架构与实战方案

一、延迟敏感行业面临的DDoS攻击新挑战 2025年&#xff0c;金融交易、实时竞技游戏、工业物联网等低延迟业务成为DDoS攻击的首要目标。攻击呈现三大特征&#xff1a; AI驱动的自适应攻击&#xff1a;攻击流量模拟真实用户行为&#xff0c;差异率低至0.5%&#xff0c;传统规则引…...

背包问题双雄:01 背包与完全背包详解(Java 实现)

一、背包问题概述 背包问题是动态规划领域的经典问题&#xff0c;其核心在于如何在有限容量的背包中选择物品&#xff0c;使得总价值最大化。根据物品选择规则的不同&#xff0c;主要分为两类&#xff1a; 01 背包&#xff1a;每件物品最多选 1 次&#xff08;选或不选&#…...