CNN 01(CNN简介)
一、卷积神经网络的发展
convolutional neural network
在计算机视觉领域,通常要做的就是指用机器程序替代人眼对目标图像进行识别等。那么神经网络也好还是卷积神经网络其实都是上个世纪就有的算法,只是近些年来电脑的计算能力已非当年的那种计算水平,同时现在的训练数据很多,于是神经网络的相关算法又重新流行起来,因此卷积神经网络也一样流行。
- 1974年,Paul Werbos提出了误差反向传导来训练人工神经网络,使得训练多层神经网络成为可能。
- 1979年,Kunihiko Fukushima(福岛邦彦),提出了Neocognitron, 卷积、池化的概念基本形成。
- 1986年,Geoffrey Hinton与人合著了一篇论文:Learning representations by back-propagation errors。
- 1989年,Yann LeCun提出了一种用反向传导进行更新的卷积神经网络,称为LeNet。
- 1998年,Yann LeCun改进了原来的卷积网络,LeNet-5。
深度学习三大领域: 计算机视觉CV 自然语言处理NLP 语音识别 VR
二、为什么需要卷积神经网络
2.1 图像特征数量对神经网络效果压力
假设下图是一图片大小为28 * 28 的黑白图片时候,每一个像素点只有一个值(单通道)。那么总的数值个数为 784个特征。
那现在这张图片是彩色的,那么彩色图片由RGB三通道组成,也就意味着总的数值有28* 28 *3 = 2352个值。
从上面我们得到一张图片的输入是2352个特征值,即神经网路当中与若干个神经元连接,假设第一个隐层是10个神经元,那么也就是23520个权重参数。
如果图片再大一些呢,假设图片为1000 *1000* 3,那么总共有3百万数值,同样接入10个神经元,那么就是3千万个权重参数。这样的参数大小,神经网络参数更新需要大量的计算不说,也很难达到更好的效果,大家就不倾向于使用多层神经网络了。
所以就有了卷积神经网络的流行,那么卷积神经网络为什么大家会选择它。那么先来介绍感受野以及边缘检测的概念。
2.2 感受野
1962年Hubel和Wiesel通过对猫视觉皮层细胞的研究,提出了感受野(receptive field)的概念,Fukushima基于感受野概念提出的神经认知机(neocognitron)可以看作是卷积神经网络的第一个实现网络。
单个感受器与许多感觉神经纤维相联系,感觉信息是通过许多感受神经纤维发放总和性的空间与时间类型不同的冲动,相当于经过编码来传递。
2.3 边缘检测
为了能够用更少的参数,检测出更多的信息,基于上面的感受野思想。通常神经网络需要检测出物体最明显的垂直和水平边缘来区分物体。比如
看一个列子,一个 6×6的图像卷积与一个3×3的过滤器(Filter or kenel)进行卷积运算(符号为 *),* 也可能是矩阵乘法所以通常特别指定是卷积的时候代表卷积意思。
- 相当于将 Filter 放在Image 上,从左到右、从上到下地(默认一个像素)移动过整个Image,分别计算 ImageImage 被 Filter 盖住的部分与 Filter的逐元素乘积的和
在这个6×6 的图像中,左边一半像素的值全是 10,右边一半像素的值全是 0,中间是一条非常明显的垂直边缘。这个图像与过滤器卷积的结果中,中间两列的值都是 30,两边两列的值都是 0,即检测到了原 6×66×6 图像中的垂直边缘。
注:虽然看上去非常粗,是因为我们的图像太小,只有5个像素长、宽,所以最终得到结果看到的是两个像素位置,如果在一个500 x 500的图当中,就是一个竖直的边缘了。
随着深度学习的发展,我们需要检测更复杂的图像中的边缘,与其使用由人手工设计的过滤器,还可以将过滤器中的数值作为参数,通过反向传播来学习得到。算法可以根据实际数据来选择合适的检测目标,无论是检测水平边缘、垂直边缘还是其他角度的边缘,并习得图像的低层特征。
相关文章:

CNN 01(CNN简介)
一、卷积神经网络的发展 convolutional neural network 在计算机视觉领域,通常要做的就是指用机器程序替代人眼对目标图像进行识别等。那么神经网络也好还是卷积神经网络其实都是上个世纪就有的算法,只是近些年来电脑的计算能力已非当年的那种计算水平…...
AI大模型的使用-让AI帮你写单元测试
1.体验多步提示语 我们本节就让AI帮我们写一个单元测试,全程用AI给我们答案,首先单元测试前需要有代码,那么我们让AI给我们生成一个代码,要求如下: 用Python写一个函数,进行时间格式化输出,比…...

vscode调教配置:快捷修复和格式化代码
配置vscode快捷键,让你像使用idea一样使用vscode,我们最常用的两个功能就是格式化代码和快捷修复,所以这里修改一下快捷修复和格式化代码的快捷键。 在设置中,找到快捷键配置: 然后搜索:快捷修复 在快捷键…...
pear admin 后端启动
pear admin 后端启动 一、项目结构二、启动 一、项目结构 应用结构: Pear Admin Flask ├─applications # 应用 │ ├─rights # │ ├─system # 静态资源文件 │ ├─users # │ └─views # 视图部分 ├─common # 公共模块 ├─models # 数据模…...

C++:输出系统时间(及报错处理)
#include <iostream> #include <ctime>using namespace std;int main() {// 基于当前系统的当前日期/时间time_t now time(0);cout << "1970 到目前经过秒数:" << now << endl;tm* ltm localtime(&now);// 输出 tm 结构的各个组…...

使用Windbg动态调试排查软件启动不了的问题
目录 1、问题说明 2、初步分析 3、使用Windbg启动程序进行动态调试 4、进一步分析 5、何时使用Windbg静态分析?何时使用Windbg进行动态调试? 6、最后 VC常用功能开发汇总(专栏文章列表,欢迎订阅,持续更新...&…...

Swift 技术 视频播放器滚动条(源码)
一直觉得自己写的不是技术,而是情怀,一个个的教程是自己这一路走来的痕迹。靠专业技能的成功是最具可复制性的,希望我的这条路能让你们少走弯路,希望我能帮你们抹去知识的蒙尘,希望我能帮你们理清知识的脉络࿰…...

PixelSNAIL论文代码学习(2)——门控残差网络的实现
文章目录 引言正文门控残差网络介绍门控残差网络具体实现代码使用pytorch实现 总结 引言 阅读了pixelSNAIL,很简短,就用了几页,介绍了网络结构,介绍了试验效果就没有了,具体论文学习链接 这段时间看他的代码,还是挺痛…...
WebGPU学习(9)---使用Pipeline Overridable Constants
使用Pipeline Overridable Constants WebGPU 的着色器语言是 WGSL,但与 GLSL 和 HLSL 不同,不支持 #ifdef 等宏。为了实现各种着色器变体,迄今为止,宏一直是着色器编程中非常重要的功能。那么应该如何处理没有宏的 WGSLÿ…...

javaweb入门版学生信息管理系统-增删改查+JSP+Jstl+El
dao public class StudentDao {QueryRunner queryRunner QueryRunnerUtils.getQueryRunner();//查询全部学生信息public List<Student> selectStudent(){String sql "select * from tb_student";List<Student> students null;try {students queryRunn…...

云原生Kubernetes:K8S概述
目录 一、理论 1.云原生 2.K8S 3.k8s集群架构与组件 二、总结 一、理论 1.云原生 (1)概念 云原生是一种基于容器、微服务和自动化运维的软件开发和部署方法。它可以使应用程序更加高效、可靠和可扩展,适用于各种不同的云平台。 如果…...

nmap的使用
目录 nmap简介 主要作用 nmap原理 namp使用 options nmap列举远程机器开放端口 普通扫描 扫描范围端口 对几个端口探测 对所有端口进行探测 指定协议探测端口 扫描对应协议的所有端口 端口状态 nmap识别目标机器上服务的指纹 服务指纹 识别目标机器服务信息 …...

Python爬虫-某网酒店数据
前言 本文是该专栏的第5篇,后面会持续分享python爬虫案例干货,记得关注。 本文以某网的酒店数据为例,实现根据目标城市获取酒店数据。具体思路和方法跟着笔者直接往下看正文详细内容。(附带完整代码) 正文 地址:aHR0cHM6Ly93d3cuYnRoaG90ZWxzLmNvbS9saXN0L3NoYW5naGFp …...
了解atoi和offsetof
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 目录 文章目录 一、简介 二、深度剖析 1.atoi 2.offsetof 三、应用场景 一、简介二、深度剖析 1.atoi2.offsetof三、应用场景 一、简介 在C语言中,有许多…...

命令行编译VS工程
先输入以下命令,因为命令出错了,就会弹出帮助,如下: "C:\Program Files (x86)\Microsoft Visual Studio 11.0\Common7\IDE\devenv.exe" /help 反正就是Microsoft Visual Studio 的安装路径。 帮助界面如下:…...
Linux防火墙命令
开启防火墙 systemctl start firewalld关闭防火墙 systemctl stop firewalld # 暂时关闭防火墙 systemctl disable firewalld # 永久关闭防火墙(禁用开机自启) systemctl enable firewalld # 永久开启防火墙(启用开机自启)重启防火墙 systemctl restart firewalld重载规则 …...

大数据平台数据脱敏是什么意思?有哪些方案?
大数据平台包含了海量多样化数据,所以保障大数据平台数据安全非常重要,数据脱敏就是手段之一。今天我们就来简单聊聊大数据平台数据脱敏是什么意思?有哪些方案? 大数据平台数据脱敏是什么意思? 大数据平台数据脱敏简…...
前后端分离不存在会话,sessionid不一致问题
目录 1.使用拦截器解决跨域的示例: 2.使用redis,不使用session 前后端不分离项目我们可以通过session存储数据,但是前后端分离时不存在会话,每次请求sessionid都会改变,当值我们储存的数据不能取出来。 1.使用拦截器…...
Python 3+ 安装及pip配置
Python 3 安装及pip安装升级 1. 安装Python依赖2. 在Linux服务器下载3. 创建python链接4. 配置pip 服务器环境:Linux CentOS 7 内核版本3.10 Python版本:3.10.6 由于CentOS 7默认安装python2.7,使用yum可以查到最新的python3版本为3.6.8&…...
StarRocks入门到熟练
1、部署 1.1、注意事项 需要根据业务需求设计严谨的集群架构,一般来说,需要注意以下几项: 1.1.1、FE数量及高可用 FE的Follower要求为奇数个,且并不建议部署太多,通常我们推荐部署1个或3个Follower。在三个Followe…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...

自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解
在 C/C 编程的编译和链接过程中,附加包含目录、附加库目录和附加依赖项是三个至关重要的设置,它们相互配合,确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中,这些概念容易让人混淆,但深入理解它们的作用和联…...

给网站添加live2d看板娘
给网站添加live2d看板娘 参考文献: stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下,文章也主…...
Java 与 MySQL 性能优化:MySQL 慢 SQL 诊断与分析方法详解
文章目录 一、开启慢查询日志,定位耗时SQL1.1 查看慢查询日志是否开启1.2 临时开启慢查询日志1.3 永久开启慢查询日志1.4 分析慢查询日志 二、使用EXPLAIN分析SQL执行计划2.1 EXPLAIN的基本使用2.2 EXPLAIN分析案例2.3 根据EXPLAIN结果优化SQL 三、使用SHOW PROFILE…...

LangGraph--Agent工作流
Agent的工作流 下面展示了如何创建一个“计划并执行”风格的代理。 这在很大程度上借鉴了 计划和解决 论文以及Baby-AGI项目。 核心思想是先制定一个多步骤计划,然后逐项执行。完成一项特定任务后,您可以重新审视计划并根据需要进行修改。 般的计算图如…...