opencv 案例05-基于二值图像分析(简单缺陷检测)
缺陷检测,分为两个部分,一个部分是提取指定的轮廓,第二个部分通过对比实现划痕检测与缺角检测。本次主要搞定第一部分,学会观察图像与提取图像ROI对象轮廓外接矩形与轮廓。
下面是基于二值图像分析的大致流程
- 读取图像
- 将图像转换为灰度图,并对其进行二值化处理。
# 图像二值化
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV |
- 进行形态学开运算以去除噪声和平滑图像。
cv.THRESH_OTSU)
# 形态学开运算去除噪声和平滑图像
se = cv.getStructuringElement(cv.MORPH_RECT, (3, 3), (-1, -1))
binary = cv.morphologyEx(binary, cv.MORPH_OPEN, se)
cv.imshow("binary", binary)
- 提取图像中的轮廓。
# 提取图像中的轮廓
contours, hierarchy = cv.findContours(binary, cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE)
- 针对每个轮廓,计算其外接矩形,并根据一些条件绘制矩形和轮廓。
height, width = src.shape[:2]
for c in range(len(contours)):x, y, w, h = cv.boundingRect(contours[c])area = cv.contourArea(contours[c])# 根据条件过滤不符合要求的轮廓if h > (height//2):continueif area < 150:continuecv.rectangle(src, (x, y), (x+w, y+h), (0, 0, 255), 1, 8, 0)cv.drawContours(src, contours, c, (0, 255, 0), 2, 8)
整理示例:检测图片中的缺陷并将缺陷框选出来
原图:
代码如下:
import cv2 as cvsrc = cv.imread("que01.jpg")
cv.namedWindow("input", cv.WINDOW_AUTOSIZE)
cv.imshow("input", src)# 图像二值化
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU)
# 形态学开运算去除噪声和平滑图像
se = cv.getStructuringElement(cv.MORPH_RECT, (3, 3), (-1, -1))
binary = cv.morphologyEx(binary, cv.MORPH_OPEN, se)
cv.imshow("binary", binary)# 提取图像中的轮廓
contours, hierarchy = cv.findContours(binary, cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE)height, width = src.shape[:2]
for c in range(len(contours)):x, y, w, h = cv.boundingRect(contours[c])area = cv.contourArea(contours[c])# 根据条件过滤不符合要求的轮廓if h > (height//2):continueif area < 150:continuecv.rectangle(src, (x, y), (x+w, y+h), (0, 0, 255), 1, 8, 0)cv.drawContours(src, contours, c, (0, 255, 0), 2, 8)cv.imshow("result", src)
cv.imwrite("binary2.png", src)cv.waitKey(0)
cv.destroyAllWindows()
运行结果如下:
示例2:
原图:
修改上面的图片路径地址运行看效果
对于明显的缺陷检测还是可以的,但是实际生产的缺陷肯定不是这么明显的,如下图:
后续讲解这类的缺陷该如何检测,敬请期待!!!!
相关文章:

opencv 案例05-基于二值图像分析(简单缺陷检测)
缺陷检测,分为两个部分,一个部分是提取指定的轮廓,第二个部分通过对比实现划痕检测与缺角检测。本次主要搞定第一部分,学会观察图像与提取图像ROI对象轮廓外接矩形与轮廓。 下面是基于二值图像分析的大致流程 读取图像将图像转换…...
Elasticsearch入门介绍
应用场景 1 它提供了强大的搜索功能,可以实现类似百度、谷歌等搜索。 2 可以搜索日志或者交易数据,用来分析商业趋势、搜集日志、分析系统瓶颈或者运行发展等等 3 可以提供预警功能(持续的查询分析某个数据,如果超过一定的值&a…...

QML Book 学习基础3(动画)
目录 主要动画元素 例子: 非线性动画 分组动画 Qt 动画是一种在 Qt 框架下创建交互式和引人入胜的图形用户界面的方法,我们可以认为是对某个基础元素的多个设置 主要动画元素 PropertyAnimation-属性值变化时的动画 NumberA…...

Lesson4-3:OpenCV图像特征提取与描述---SIFT/SURF算法
学习目标 理解 S I F T / S U R F SIFT/SURF SIFT/SURF算法的原理,能够使用 S I F T / S U R F SIFT/SURF SIFT/SURF进行关键点的检测 SIFT/SURF算法 1.1 SIFT原理 前面两节我们介绍了 H a r r i s Harris Harris和 S h i − T o m a s i Shi-Tomasi Shi−Tomasi…...
语言基础篇9——Python流程控制
流程控制 顺序结构、条件结构、循环结构,顺序结构由自上而下的语句构成,条件结构由if、match-case构成,循环结构由for、while构成。 if语句 flag 1 if flag 1:print("A") elif flag 2:print("B") else:print("…...
MATLAB算法实战应用案例精讲-【概念篇】构建数据指标方法(补充篇)
目录 前言 几个高频面试题目 指标与标签的区别 几个相关概念 数据域 业务过程...

【pyqt5界面化工具开发-12】QtDesigner图形化界面设计
目录 0x00 前言 一、启动程序 二、基础的使用 三、保存布局文件 四、加载UI文件 0x00 前言 关于QtDesigner工具的配置等步骤(网上链接也比较多) 下列链接非本人的(如果使用pip 在命令行安装过pyqt5以及tools,那么就可以跳过…...

CXL.mem S2M Message 释义
🔥点击查看精选 CXL 系列文章🔥 🔥点击进入【芯片设计验证】社区,查看更多精彩内容🔥 📢 声明: 🥭 作者主页:【MangoPapa的CSDN主页】。⚠️ 本文首发于CSDN,…...

设计模式—外观模式(Facade)
目录 一、什么是外观模式? 二、外观模式具有什么优点吗? 三、外观模式具有什么缺点呢? 四、什么时候使用外观模式? 五、代码展示 ①、股民炒股代码 ②、投资基金代码 ③外观模式 思维导图 一、什么是外观模式?…...
Stack Overflow开发者调查发布:AI将如何协助DevOps
Stack Overflow 发布了开创性的2023年度开发人员调查报告 [1]。报告对 90,000 多名开发人员进行了调查,全面展示了当前软件开发人员的体验。接下来,本文将重点介绍几项重要发现,即重要编程语言和工具偏好、人工智能在开发工作流程中的应用以及…...
去掉鼠标系列之二:Sublime Text快捷键使用指南
系列之二,Sublime Text。 Sublime Text 是我们常用的文本工具,常常要沉浸如其中使用,而不希望被鼠标打扰,所以也记录一下。 学会下面这些快捷键,基本上就不需要移动鼠标啦。 1,CtrlK,CtrlV …...
docker-compose安装node-exporter, prometheus, grafana
基础 exporter提供监控数据 prometheus拉取监控数据 grafana可视化监控数据 准备 全部操作在/root/mypromethus中执行 node_exporter docker-compose -f node-exporter.yaml up -d # web访问,查看node_exporter采集到的数据 http://192.168.1.102:9101/metrics…...

企业架构LNMP学习笔记10
1、Nginx版本,在实际的业务场景中,需要使用软件新版本的功能、特性。就需要对原有软件进行升级或重装系统。 Nginx的版本需要升级迭代。那么如何进行升级呢?线上服务器如何升级,我们选择稳定版本。 从nginx的1.14版本升级到ngin…...
[国产MCU]-W801开发实例-I2C控制器
I2C控制器 文章目录 I2C控制器1、I2C控制器介绍2、I2C驱动API2、I2C简单使用示例1、I2C控制器介绍 I2C总线是一种简单、双向二线同步串口总线。I2C总线设备之间通信只需两根线即可完成设备之间的数据传输。 I2C总线设备分为主机和从机,这取决于数据传输方向。I2C总线上的主机…...

植物根系基因组与数据分析
1.背景 这段内容主要是关于植物对干旱胁迫的反应,并介绍了生活在植物体内外以及根际的真菌和细菌的作用。然而,目前对这些真菌和细菌的稳定性了解甚少。作者通过调查微生物群落组成和微生物相关性的方法,对农业系统中真菌和细菌对干旱的抗性…...

2.3 数据模型
思维导图: 前言: 我的理解: 这段话介绍了概念模型和数据模型之间的关系,以及数据模型的定义和重要性。具体解读如下: 1. **概念模型**:它是一种描述现实世界数据关系的抽象模型,不依赖于任何…...

RT-Thread 中断管理学习(一)
中断管理 什么是中断?简单的解释就是系统正在处理某一个正常事件,忽然被另一个需要马上处理的紧急事件打断,系统转而处理这个紧急事件,待处理完毕,再恢复运行刚才被打断的事件。生活中,我们经常会遇到这样…...

学习周报9.3
文章目录 前言文献阅读一摘要挑战基于时间序列的 GAN 分类 文献阅读二摘要介绍提出的模型:时间序列GAN (TimeGAN) 代码学习总结 前言 本周阅读两篇文献,文献一是一篇时序生成方面的综述,主要了解基于时间序列 的GAN主要分类以及时间序列GAN方面面临的一…...
win10 查看指定进程名的端口号
在 Windows 10 的任务管理器中也可以查看端口号。请按下面的步骤操作: 打开任务管理器,可以通过按下快捷键 CtrlShiftEsc 或者右键点击任务栏后选择任务管理器来打开。点击“性能”选项卡,然后点击左侧的“打开资源监视器”。在资源监视器中…...

函数的递归调用
1、什么是函数的递归调用? 其实说白了就是在函数的内部再调用函数自己本身 function fun(){fun() } 2、用递归解决问题的条件 (1)一个问题是可以分解成子问题,子问题的解决办法与最原始的问题解决方法相同 (2&…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
Cursor实现用excel数据填充word模版的方法
cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...

均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...
动态 Web 开发技术入门篇
一、HTTP 协议核心 1.1 HTTP 基础 协议全称 :HyperText Transfer Protocol(超文本传输协议) 默认端口 :HTTP 使用 80 端口,HTTPS 使用 443 端口。 请求方法 : GET :用于获取资源,…...
redis和redission的区别
Redis 和 Redisson 是两个密切相关但又本质不同的技术,它们扮演着完全不同的角色: Redis: 内存数据库/数据结构存储 本质: 它是一个开源的、高性能的、基于内存的 键值存储数据库。它也可以将数据持久化到磁盘。 核心功能: 提供丰…...

Windows电脑能装鸿蒙吗_Windows电脑体验鸿蒙电脑操作系统教程
鸿蒙电脑版操作系统来了,很多小伙伴想体验鸿蒙电脑版操作系统,可惜,鸿蒙系统并不支持你正在使用的传统的电脑来安装。不过可以通过可以使用华为官方提供的虚拟机,来体验大家心心念念的鸿蒙系统啦!注意:虚拟…...

使用python进行图像处理—图像变换(6)
图像变换是指改变图像的几何形状或空间位置的操作。常见的几何变换包括平移、旋转、缩放、剪切(shear)以及更复杂的仿射变换和透视变换。这些变换在图像配准、图像校正、创建特效等场景中非常有用。 6.1仿射变换(Affine Transformation) 仿射变换是一种…...
TI德州仪器TPS3103K33DBVR低功耗电压监控器IC电源管理芯片详细解析
1. 基本介绍 TPS3103K33DBVR 是 德州仪器(Texas Instruments, TI) 推出的一款 低功耗电压监控器(Supervisor IC),属于 电源管理芯片(PMIC) 类别,主要用于 系统复位和电压监测。 2. …...