易点天下基于 StarRocks 全面构建实时离线一体的湖仓方案
作者:易点天下数据平台团队
易点天下是一家技术驱动发展的企业国际化智能营销服务公司,致力于为客户提供全球营销推广服务,通过效果营销、品牌塑造、垂直行业解决方案等一体化服务,帮助企业在全球范围内高效地获取用户、提升品牌知名度、实现商业化变现。
目前,易点天下累计服务客户超过5000家,其中包括华为、阿里巴巴、腾讯、网易、字节跳动、百度、快手、爱奇艺、SHEIN、Lazada等知名企业。
易点天下始终秉持"科技使世界变得更平"的企业使命,积极采用大数据和人工智能技术来落地和推动业务的发展。
随着公司业务的扩展,我们的数据分析工作遇到了一些痛点:
1、数据处理需求日益增多:每天需要处理几十T 、近千亿的数据量;
2、数据分析的复杂度提高:如用户留存、 LTV 这一类的复杂指标,往往需要多表关联查询和实时查询,目前应用的组件不能满足业务的查询需求;
3、技术组件较多:公司有多个数据分析平台,采用的技术组件也非常多,包括 ClickHouse、Kafka、Flink、Spark、Hive 等,运营维护成本较高。
4、当前架构基本以离线为主,实时数据处理架构薄弱。
经过现状分析后,我们开始设计数据仓库的标准化规范,并寻找一款集实时离线为一体的数仓统一解决方案,对数仓进行统一规划和建设。
#01 数仓建设规范
我们从数据分层、业务类和数据域定义、数据指标、数据模型规范、模型衡量指标五个方面进行了数仓的规范建设。
1、数据分层:包括数据引入层 ODS 、明细数据层 DWD 、汇总数据层 DWS 、数据应用层 ADS 及维度层 DIM 。
2、业务类和数据域定义:此定义主要用于规范数据仓库处理数据的范围,以及处理数据的业务类型。
3、数据指标规范:包括原子指标(如点击、访问、消费金额等)、复合指标(如点击率、跳出率、投资回报率等)、派生指标(如7天账户消费金额、去年账户余额总和等)。
4、数据模型规范:包括命名规范、存储规范、数据规范三个方面;统一规范的数据模型能大幅提升开发维护效率,避免不必要的数据质量问题。
5、模型衡量指标:包括命名规范性和数据完整性、 中间层表的增长比例、应用层 ADS 跨层访问(穿透)、 较多的 ADS 表共性逻辑未下沉、应用层跨集市依赖五个方面。
#02 技术选型
在对数仓进行了标准化规范设计后,我们需要一个集实时离线为一体的数仓统一解决方案,通过数仓建设,来解决以下问题:
数据存储的规范性
数据模型的复用性
数据模型的耦合性
数据的完整性
数据查询效率
数据成本可控
基于此,我们对市面上常见的数据库产品做了选型对比:
1)查询性能对比
我们主要对 ClickHouse 和 StarRocks 的查询性能做了对比,在 SSB 单表和用户经常碰到的低基数聚合场景下对比了 StarRocks 和 ClickHouse 的性能指标。采用一组16core 64GB 内存的云主机,在 6 亿行的数据规模进行测试。
得益于向量化执行引擎、优秀的CBO优化器、物化视图、Runtime Filter 等各方面的优化,StarRocks 的查询性能表现非常优异,下面测试为各种引擎在不同SQL下花费的时间, ClickHouse 的整体查询时间是 StarRocks 的 2.26 倍。

图1:各种引擎在不同SQL下花费的时间

图2: StarRocks 通过实现全面向量化引擎,按照列式的方式组织和处理数据,充分发挥了 CPU 的处理能力
2)使用与运维对比
除了查询性能,我们从使用成本、易用性、运维成本等方面,对比了几款比较热门的产品,最终我们计划将基于 ClickHouse 等其他数据库产品的查询迁移到基于 StarRocks 来构建数据仓库。

#03 技术架构
数据平台目前处理的数据涉及公司多个产品,每日处理全球增量数据几十T,近千亿条记录,跨云跨地域的数据也给数据处理带来不少挑战。
目前我们已经针对 BI 系统开展了基于 StarRocks 的数据仓库的建设,随着经验的积累,后期会推广到数据平台所有项目的数据场景中。
目前数据平台以实时流和离线处理两条方式同时向 StarRocks 数据仓库中进行数据 Load 。下图是目前数据平台在数据分析中的主要流程架构,如图所示,架构中我们自研了数据治理平台(DataPlus)用于数据监控提高数据质量, 维护元数据血缘等数据的拓扑结构,自动化建模。另外我们还自研了分布式的跨云调度系统(EasyJob),用于系统便捷地处理多云环境下的数据依赖和调度。

离线数据导入通过 EasyJob 定时调用 Broker Load 的方式导入 StarRocks 。

通过 DataPlus 系统,我们对 StarRocks 中的数据和云存储数据进行了定时的一致性校验,保证数据的一致性。

我们一直寻找一种实时和离线一体的数据处理解决方案,实时离线数据处理完后会进入 StarRocks 进行全流程建模,基于 StarRocks 进行湖仓一体结构的搭建。
最底层 ODS 基于外部数据源建立,数据存储在外部云存储上例如OSS,S3,ODS 等,然后通过调度系统定时触发上层表的生成,另外,DWS、ADS的部分表模型,也可以借助于物化视图方式实现,提升构建和查询效率。
整体数据流动架构如下:

StarRocks 能够支持秒级的导入延迟,提供准实时的服务能力。 StarRocks 的存储引擎在数据导入时能够保证每一次操作的 ACID。一个批次的导入数据生效是原子性的,要么全部导入成功,要么全部失败。并发进行的各个事务相互之间互不影响,可以提供 Snapshot Isolation 的事务隔离级别。

StarRocks 存储引擎不仅能够提供高效的 Append 操作,也能高效的处理 Upsert 类操作。使用 Delete-and-insert (Merge_on_write)的实现方式,通过主键索引快速过滤,消除了读取时 Sort merge 操作,同时还可以充分利用其他二级索引。在大量更新的场景下,仍然可以保证查询的极速性能。
#04 智能数据建模
通过元数据、数据血缘体系的建立,未来我们可以通过让建模规范、建模质量等规则自动化,形成线上系统的自动化建模功能,自动化建模生成标准 SQL ,最终在 StarRocks 中定时执行生效。下图是建模过程和 DataPlus 中功能的映射。建模自动化的好处就是可以限制人为建模的不规范操作,最大程度的优化模型和成本。

模型定义后,对模型生成效率的优化至关重要,不一样的解决方式会影响模型的查询生成效率,模型的复用度也会影响用户使用体验。
我们在建模中针对下面三个模型进行了基于 StarRocks 的重点构造,大大提高了查询效率。
物化视图
在数仓建模中我们大量采用了物化视图来加速和生成 DWS 以上数据层,StarRocks 当前支持单表同步、多表异步以及对 SQL 的透明改写能力,未来还会提供多表同步等更多能力,可以从建模和提速两个方面对业务场景提供帮助。
针对不同的刷新方式,我们进行了两组查询对比,如图所示,通过物化视图能够获得更快的查询性能体验,有了物化视图,我们可以从复杂的数据加工工作中解放出来,更加专注于数仓模型本身。

分析模型
统一的模型 SQL 设计,高阶函数的应用,可以提高查询性能50%以上。例如我们主要针对下面三种常见分析模型设计了标准建模 SQL ,未来将通过此标准自动建模,提升查询效率。
行为分析的应用 – 用户留存分析
对于用户留存的分析,经常会在多个条件下获取用户的行为状态,我们采用了 retention 函数来分析,大幅提升了查询分析的效率。
例如:例如:要清楚的了解 event=view 并且时间在2022-11-01、2022-11-02、2022-11-03条件下的用户情况, 传统的方式需先进行 event=view and date=' **--**' 条件判断,然后进行合并,但是 retention 函数的出现直接简化了相应的建模过程,通过 retention 函数,可以直接获取 event=view 以及三个日期条件下的行为,并且以数组的形式进行展示,之后可以通过对数组的聚合操作,进行相应的行为分析。

行为分析的应用 – 漏斗分析
针对用户的转化分析场景,例如需要分析在一定的时间窗口中,用户在一系列连续行为下的相关行为,可以直接采用StarRocks 中的 window_funnel 进行建模,实现高效的漏斗分析。 该函数可以从事件链中的第一个条件开始判断。如果数据中包含符合条件的事件,则向计数器加 1,并以此事件对应的时间作为滑动窗口的起始时间。如果未能找到符合第一个条件的数据,则返回为 0 。在滑动窗口内,如果事件链中的事件按顺序发生,则计数器递增;如果超出了时间窗口,则计数器不再增加。如有多条符合条件的事件链,则输出最长的事件链。

如上图 SQL ,可以计算在规定时间窗口内,用户在 view/click/purchase/pay 连续行为下的相关数据,最终返回不同的连续行为级别下对应的用户数量。
行为分析的应用 – 路径分析
针对用户前后行为路径分析场景,例如需要针对用户前后行为进行对比分析的场景,可以综合考虑采用 StarRocks 支持的 ROW_NUMBER(),LEAD(),LAG()等窗口函数进行建模分析。 如下是一个针对用户前后行为分析的具体案例,可以针对用户的 event 以及前置 event 进行展示:

#05 建设成果
公司数仓建设过程分为四个阶段:
数据仓库规范建立和技术调研选型。
性能压测:经过测试,StarRocks 和之前我们应用的 ClickHouse 有2.2倍以上的提升。Join 查询更是有数倍的提升,小时级导入时间的数据量可以在1分钟完成 Load ,保证离线查询效率。
试点运行:经过迁移,部分业务使用效率得到大幅提升,以往比较的复杂自主 SQL 查询、TP95 查询都可以在5s返回。支持交互式 SQL 自主分析。
全面部署:在公司其他数据类产品中应用 StarRocks ,并完善监控等集群的自动化运维。
在 BI 系统中经过一段时间的使用,StarRocks 的应用已经进入第四阶段,未来公司会将更多的业务切入到StarRocks,并结合 DataPlus 的智能建模、表热度分析等数据治理,相信性能和成本会达到更理想的状态。同样我们也期待 StarRocks 在新版本中可以提供更丰富的功能。
-关于StarRocks
StarRocks 是数据分析新范式的开创者、新标准的领导者。面世三年来,StarRocks 一直专注打造世界顶级的新一代极速全场景 MPP 数据库,帮助企业构建极速统一的湖仓新范式,是实现数字化转型和降本增效的关键基础设施。
StarRocks 持续突破既有框架,以技术创新全面驱动用户业务发展。当前全球超过 200 家市值 70 亿元以上的头部企业都在基于 StarRocks 构建新一代数据分析能力,包括腾讯、携程、平安银行、中原银行、中信建投、招商证券、众安保险、大润发、百草味、顺丰、京东物流、TCL、OPPO 等,并与全球云计算领导者亚马逊云、阿里云、腾讯云等达成战略合作伙伴。
拥抱开源,StarRocks 全球开源社区飞速成长。截至 2022 年底,已有超过 200 位贡献者,社群用户近万人,吸引几十家国内外行业头部企业参与共建。项目在 GitHub 星数已超 3900 个,成为年度开源热力值增速第一的项目,市场渗透率跻身中国前十名。
相关文章:
易点天下基于 StarRocks 全面构建实时离线一体的湖仓方案
作者:易点天下数据平台团队易点天下是一家技术驱动发展的企业国际化智能营销服务公司,致力于为客户提供全球营销推广服务,通过效果营销、品牌塑造、垂直行业解决方案等一体化服务,帮助企业在全球范围内高效地获取用户、提升品牌知…...
Tomcat的类加载机制
不遵循双亲委托 在JVM中并不是一次性地把所有的文件都加载到,而是按需加载,加载机制采用 双亲委托原则,如下图所示: BootStrapClassLoader 引导类加载器ExtClassLoader 扩展类加载器AppClassLoader 应用类加载器CustomClassLoad…...
【shell 编程大全】数组,逻辑判断以及循环
数组,逻辑判断以及循环1. 概述 大家好,我又来了。今天呢我们继续学习shell相关的知识。还是老样子我们先回顾下上一次【脚本交互 以及表达式】学习到的知识 登录shell 关联配置文件什么是子shellumask 修改默认权限read 基础表达式 简单计算表达式expr 计…...
Android13 Bluetooth更新
目录 Android 13 版本说明 LE Audio 代码更新 Android 12代码路径 Android 13代码路径 Android 13 版本说明 里面对蓝牙更新的描述较少,一出提到蓝牙的一...
手工测试混了5年,年底接到了被裁员的消息....
大家都比较看好软件测试行业,只是因为表面上看起来:钱多事少加班少。其实这个都是针对个人运气好的童人才会有此待遇。在不同的阶段做好不同阶段的事情,才有可能离这个目标更近,作为一枚软件测试人员,也许下面才是我们…...
Umi框架
什么是 umi umi 是由 dva 的开发者 云谦 编写的一个新的 React 开发框架。umi 既是一个框架也是一个工具,可以将它简单的理解为一个专注性能的类 next.js 前端框架,并通过约定、自动生成和解析代码等方式来辅助开发,减少开发者的代码量。 u…...
教你学git
前言 git是一种用于多人合作写项目。详细说明如下 文章目录前言什么是版本控制?什么是 Git?它就属于人工版本控制器版本控制工具常见版本控制工具怎么工作的?git 文件生命周期状态区域安装配置-- global检查配置创建仓库工作流与基本操作查看…...
【工作笔记】syslog,kern.log大量写入invalid cookie错误信息问题
任务描述 错误出现出现过四五次,应该是诊断单元tf卡读写出问题导致下面这条告警一直高频写入到/var/log/下的syslog、kern.log、messages中 Nov 23 06:25:12 embest kernel: omap_hsmmc 48060000.mmc: [omap_hsmmc_pre_dma_transfer] invalid cookie: data->hos…...
【C++】多线程
多任务处理有两种形式,即:多进程和多线程。 基于进程的多任务处理是程序的并发执行。基于线程的多任务处理是同一程序的片段的并发执行 文章目录1. 多线程介绍2. Windows多线程1. 多线程介绍 每一个进程(可执行程序)都有一个主线…...
0202插入删除-算法第四版红黑树-红黑树-数据结构和算法(Java)
文章目录4 插入4.1 序4.2 向单个2-结点插入新键4.3 向树底部的2-结点插入新键4.4 向一棵双键树(3-结点)中插入新键4.5 颜色调整4.6 根结点总是黑色4.7 向树底部的3-结点插入新键4.8 将红链接在树中向上传递4.9 实现5 删除5.1 删除最小键5.2 删除6 有序性…...
vue 生成二维码插件 vue-qr使用方法
一、安装 npm install vue-qr --save二、引入 import VueQr from vue-qrcomponents:{VueQr,},三、使用 <vue-qr:text"dyQrcode":size"170":logoSrc"logo":margin"6":logoScale"0.2"></vue-qr>四、属性说明 …...
网络工程课(二)
ensp配置vlan 一、配置计算机ip地址和子网掩码 二、配置交换机LSW1 system-view [Huawei]sysname SW1 [SW1]vlan batch 10 20 [SW1]interface Ethernet0/0/1 [SW1-Ethernet0/0/1]port link-type access 将接口设为access接口 [SW1-Ethernet0/0/1]port default vlan 10 [SW1-E…...
Pytorch并行计算(三): 梯度累加
梯度累加 梯度累加(Gradient Accmulation)是一种增大训练时batch size的技巧。当batch size在一张卡放不下时,可以将很大的batch size分解为一个个小的mini batch,分别计算每一个mini batch的梯度,然后将其累加起来优…...
蓝桥杯入门即劝退(十八)最小覆盖子串(滑动窗口解法)
欢迎关注点赞评论,共同学习,共同进步! ------持续更新蓝桥杯入门系列算法实例-------- 如果你也喜欢Java和算法,欢迎订阅专栏共同学习交流! 你的点赞、关注、评论、是我创作的动力! -------希望我的文章…...
Android一~
进程和线程的区别https://zhuanlan.zhihu.com/p/60375108https://zhuanlan.zhihu.com/p/138689342线程池的用法和原理tcp三次握手和四次挥手、tcp基础http请求报文格式二叉树中序遍历(算法)activity启动模式OKhttp源码讲解Java修饰符Java线程同步的方法s…...
一月券商金工精选
✦研报目录✦ ✦简述✦ 按发布时间排序 国盛证券 “薪火”量化分析系列研究(二)-票据逾期数据中的选股信息 发布日期:2023-01-04 关键词:股票、票据、票据预期 主要内容:本文深入探讨了“票据持续逾期名单”这一…...
UML中常见的9种图
UML是Unified Model Language的缩写,中文是统一建模语言,是由一整套图表组成的标准化建模语言。UML用于帮助系统开发人员阐明,展示,构建和记录软件系统的产出。通过使用UML使得在软件开发之前, 对整个软件设计有更好的…...
使用SpringBoot实现无限级评论回复功能
评论功能已经成为APP和网站开发中的必备功能。本文采用springbootmybatis-plus框架,通过代码主要介绍评论功能的数据库设计和接口数据返回。我们返回的格式可以分三种方案,第一种方案是先返回评论,再根据评论id返回回复信息,第二种方案是将评论回复直接封装成一个类似于树的数据…...
Kafka 介绍和使用
文章目录前言1、Kafka 系统架构1.1、Producer 生产者1.2、Consumer 消费者1.3、Consumer Group 消费者群组1.4、Topic 主题1.5、Partition 分区1.6、Log 日志存储1.7、Broker 服务器1.8、Offset 偏移量1.9、Replication 副本1.10、Zookeeper2、Kafka 环境搭建2.1、下载 Kafka2.…...
[学习笔记]Rocket.Chat业务数据备份
Rocket.Chat 的业务数据主要存储于mongodb数据库的rocketchat库中,聊天中通过发送文件功能产生的文件储存于/app/uploads中(文件方式设置为"FileSystem"),因此在对Rocket.Chat做数据移动或备份主要分为两步,…...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
C++:std::is_convertible
C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...
从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
【JVM面试篇】高频八股汇总——类加载和类加载器
目录 1. 讲一下类加载过程? 2. Java创建对象的过程? 3. 对象的生命周期? 4. 类加载器有哪些? 5. 双亲委派模型的作用(好处)? 6. 讲一下类的加载和双亲委派原则? 7. 双亲委派模…...
