RT-Thread 内核移植
内核移植
内核移植就是将RTT内核在不同的芯片架构、不同的板卡上运行起来,能够具备线程管理和调度,内存管理,线程间同步等功能。
移植可分为CPU架构移植和BSP(Board support package,板级支持包)移植两部分。
CPU架构移植
在嵌入式领域有多种不同CPU架构,例如Cortex-M,ARM920T、MIPS32、RISC-V等等。
为了使RTT能够在不同CPU架构的芯片上运行,RT-Thread提供了一个libcpu抽象层来适配不同的CPU架构。
libcpu层向上对内核提供统一的接口,包括全局中断的开关,线程栈的初始化,上下文切换等等。
libcpu抽象层向下提供了一套统一的CPU架构移植接口,这部分接口包含了全局中断开关函数、线程上下文切换函数、时钟节拍的配置和中断函数、Cache 等等内容。下表是 CPU 架构移植需要实现的接口和变量。
libcpu移植相关API
- rt_base_t rt_hw_interrupt_disable(void);关闭全局中断
- void rt_hw_interrupt_enbale(rt_base_t level);打开全局中断
- rt_uint8_t *rt_hw_stack_init(void *tentery, void *parameter,void *stack_addr, void *texit);线程栈的初始化,内核在线程创建和线程初始化里面会调用这个函数。
- void rt_hw_context_switch_to(rt_uint32_t to);没有来源线程的上下文切换,在调度器启动第一个线程的时候会调用,以及在signal里面会调用。
- void rt_hw_context_switch(rt_uint32_t from, rt_uint32_t to);从from线程切换到to线程,用于线程和线程之间的切换。
- void rt_hw_context_switch_interrupt(rt_uint32_t from, rt_uint32_t to);从from线程切换到to线程,用于中断里面进行切换的时候使用。
- rt_uint32_t rt_thread_switch_interrupt_flag; 表示需要再中断里面进行切换的标志。
- rt_uint32_t rt_interrupt_from_thread, rt_interrupt_to_thread;在线程进行上下文切换时,保存from线程和to线程。
实现全局中断开关
无论内核代码还是用户的代码,都可能存在一些变量,需要在多个线程或者中断里面使用,如果没有相应的保护机制,那就可能导致临界区问题。RT-Thread 里为了解决这个问题,提供了一系列的线程间同步和通信机制来解决。但是这些机制都需要用到 libcpu 里提供的全局中断开关函数。它们分别是:
/* 关闭全局中断 */
rt_base_t rt_hw_interrupt_disable(void);/* 打开全局中断 */
void rt_hw_interrupt_enable(rt_base_t level);
下面介绍在Cortex-M架构上实现这两个函数,为了快速开关中断,实现了CPS指令,可以用在此处。
CPSID I ;PRIMASK=1, ; 关中断
CPSIE I ;PRIMASK=0, ; 开中断
关闭全局中断
在rt_hw_interrupt_disable()函数里面需要完成的功能是:
- 保存当前的全局中断状态,并把状态作为函数的返回值。
- 关闭全局中断。
;/*
; * rt_base_t rt_hw_interrupt_disable(void);
; */
rt_hw_interrupt_disable PROC ;PROC 伪指令定义函数EXPORT rt_hw_interrupt_disable ;EXPORT输出定义的函数,类似于C语言externMRS r0, PRIMASK ; 读取 PRIMASK 寄存器的值到 r0 寄存器CPSID I ; 关闭全局中断BX LR ; 函数返回ENDP ;ENDP 函数结束
上面代码首先使用MRS指令将PRIMASK寄存器的值保存到r0寄存器里,然后使用CPSID I指令关闭全局中断,最后使用BX指令返回。r0存储的数据就是函数的返回值。
中断可以发生在 “MRS r0, PRIMASK” 指令和 “CPSID I” 之间,这并不会导致全局中断状态的错乱。
打开全局中断
在 rt_hw_interrupt_enable(rt_base_t level) 里,将变量 level 作为需要恢复的状态,覆盖芯片的全局中断状态。
基于 MDK,在 Cortex-M 内核上的实现打开全局中断,如下代码所示:
打开全局中断
;/*
; * void rt_hw_interrupt_enable(rt_base_t level);
; */
rt_hw_interrupt_enable PROC ; PROC 伪指令定义函数EXPORT rt_hw_interrupt_enable ; EXPORT 输出定义的函数,类似于 C 语言 externMSR PRIMASK, r0 ; 将 r0 寄存器的值写入到 PRIMASK 寄存器BX LR ; 函数返回ENDP ; ENDP 函数结束
使用MSR指令将r0寄存器的值写入到PRIMASK寄存器,从而恢复之前的中断状态。
实现线程栈初始化
在动态创建线程和初始化线程的时候,会使用内部的线程初始化函数_rt__thread_init(),_rt_thread_init()函数会调用栈初始化函数rt_hw_stack_init(),在栈初始化函数里会手动构造一个上下文内容,这个上下文内容被作为每个线程第一次执行的初始值。

rt_uint8_t *rt_hw_stack_init(void *tentry,void *parameter,rt_uint8_t *stack_addr,void *texit)
{struct stack_frame *stack_frame;rt_uint8_t *stk;unsigned long i;/* 对传入的栈指针做对齐处理 */stk = stack_addr + sizeof(rt_uint32_t);stk = (rt_uint8_t *)RT_ALIGN_DOWN((rt_uint32_t)stk, 8);stk -= sizeof(struct stack_frame);/* 得到上下文的栈帧的指针 */stack_frame = (struct stack_frame *)stk;/* 把所有寄存器的默认值设置为 0xdeadbeef */for (i = 0; i < sizeof(struct stack_frame) / sizeof(rt_uint32_t); i ++){((rt_uint32_t *)stack_frame)[i] = 0xdeadbeef;}/* 根据 ARM APCS 调用标准,将第一个参数保存在 r0 寄存器 */stack_frame->exception_stack_frame.r0 = (unsigned long)parameter;/* 将剩下的参数寄存器都设置为 0 */stack_frame->exception_stack_frame.r1 = 0; /* r1 寄存器 */stack_frame->exception_stack_frame.r2 = 0; /* r2 寄存器 */stack_frame->exception_stack_frame.r3 = 0; /* r3 寄存器 *//* 将 IP(Intra-Procedure-call scratch register.) 设置为 0 */stack_frame->exception_stack_frame.r12 = 0; /* r12 寄存器 *//* 将线程退出函数的地址保存在 lr 寄存器 */stack_frame->exception_stack_frame.lr = (unsigned long)texit;/* 将线程入口函数的地址保存在 pc 寄存器 */stack_frame->exception_stack_frame.pc = (unsigned long)tentry;/* 设置 psr 的值为 0x01000000L,表示默认切换过去是 Thumb 模式 */stack_frame->exception_stack_frame.psr = 0x01000000L;/* 返回当前线程的栈地址 */return stk;
}
实现上下文切换
在不同的CPU架构里,线程之间的上下文切换和中断到线程的上下文切换,上下文的寄存器部分可能是有差异的,也可能是一样的。在 Cortex-M 里面上下文切换都是统一使用 PendSV 异常来完成,切换部分并没有差异。但是为了能适应不同的 CPU 架构,RT-Thread 的 libcpu 抽象层还是需要实现三个线程切换相关的函数:
1) rt_hw_context_switch_to():没有来源线程,切换到目标线程,在调度器启动第一个线程的时候被调用。
2) rt_hw_context_switch():在线程环境下,从当前线程切换到目标线程。
3) rt_hw_context_switch_interrupt ():在中断环境下,从当前线程切换到目标线程。
在线程环境下进行切换和在中断环境进行切换是存在差异的。
线程环境下,如果调用rt_hw_context_switch()函数,那么可以马上进行上下文切换;而在中断环境下,需要等待中断处理函数完成之后才能进行切换。
在中断处理程序里如果触发了线程的调度,调度函数里会调用rt_hw_context_switch_interrupt()触发上下文切换。中断处理程序里处理完中断事务之后,中断退出之前检查rt_thread_switch_interrupt_flag变量,如果该变量的值为1,就根据rt_interrupt_from_thread 变量和 rt_interrupt_to_thread 变量,完成线程的上下文切换。
在Cortex-M处理器架构里,基于自动部分压栈和PendSV的特性,上下文切换可以实现地更加简洁。

硬件在进入PendSV中断之前自动保存了from线程的PSR、PC、LR、R12、R3R0寄存器,然后在PendSV里保存from线程的R11R4寄存器,最后硬件在退出PendSV中断之后,自动恢复 to 线程的 R0~R3、R12、LR、PC、PSR 寄存器。

硬件在进入中断之前自动保存了 from 线程的 PSR、PC、LR、R12、R3-R0 寄存器,然后触发了PendSV异常,在 PendSV 异常处理函数里保存 from 线程的 R11~R4 寄存器,以及恢复 to 线程的 R4~R11 寄存器,最后硬件在退出 PendSV 中断之后,自动恢复 to 线程的 R0~R3、R12、PSR、PC、LR 寄存器。
显然,在Cortex-M内核里rt_hw_context_switch() 和 rt_hw_context_switch_interrupt() 功能一致,都是在PendSV里完成剩余上下文的保存和恢复。所以我们仅仅需要实现一份代码,简化移植的工作。
实现 rt_hw_context_switch_to()
rt_hw_context_switch_to() 只有目标线程,没有来源线程。这个函数里实现切换到指定线程的功能,下图是流程图:
- 将参数to保存到rt_interrupt_to_thread变量
- 将rt_interrupt_from_thread变量设置为0
- 将flag变量设置为1
- 设置PendSV异常优先级、触发PendSV中断
- 恢复MSP的默认值
- 使能全局中断
;/*
; * void rt_hw_context_switch_to(rt_uint32_t to);
; * r0 --> to
; * this fucntion is used to perform the first thread switch
; */
rt_hw_context_switch_to PROCEXPORT rt_hw_context_switch_to; r0的值是一个指针,该指针指向to线程的线程控制块的SP成员; 将r0寄存器的值保存到rt_interrupt_to_thread变量里LDR r1, =rt_interrupt_to_threadSTR r0, [r1]; 设置from线程为空,表示不需要保存from的上下文LDR r1, =rt_interrupt_from_threadMOV r0, #0x0STR r0, [r1]; 设置标志为1,表示需要切换,这个变量会在PendSV异常处理函数里切换的时候被清零LDR r1, =rt_thread_switch_interrupt_flagMOV r0, #1STR r0, [r1]; 设置PendSV异常优先级为最低优先级LDR r0, =NVIC_SYSPRI2LDR r1, =NVIC_PENDSV_PRILDR.W r2, [r0,#0x00] ; readORR r1,r1,r2 ; modifySTR r1, [r0] ; write-back; 触发PendSV异常(执行PendSV异常处理程序)LDR r0, =NVIC_INT_CTRLLDR r1, =NVIC_PENDSVSETSTR r1, [r0]; 放弃芯片启动到第一次上下文切换之前的栈内容,将 MSP 设置启动时的值LDR r0, =SCB_VTORLDR r0, [r0]LDR r0, [r0]MSR msp, r0; 使能全局中断和全局异常,使能之后将进入 PendSV 异常处理函数CPSIE FCPSIE I; 不会执行到这里ENDP
实现 rt_hw_context_switch()/ rt_hw_context_switch_interrupt()
函数 rt_hw_context_switch() 和函数 rt_hw_context_switch_interrupt() 都有两个参数,分别是 from 线程和 to 线程。它们实现从 from 线程切换到 to 线程的功能。

;/*
; * void rt_hw_context_switch(rt_uint32_t from, rt_uint32_t to);
; * r0 --> from
; * r1 --> to
; */
rt_hw_context_switch_interruptEXPORT rt_hw_context_switch_interrupt
rt_hw_context_switch PROCEXPORT rt_hw_context_switch; 检查 rt_thread_switch_interrupt_flag 变量是否为 1; 如果变量为 1 就跳过更新 from 线程的内容LDR r2, =rt_thread_switch_interrupt_flagLDR r3, [r2]CMP r3, #1BEQ _reswitch; 设置 rt_thread_switch_interrupt_flag 变量为 1MOV r3, #1STR r3, [r2]; 从参数 r0 里更新 rt_interrupt_from_thread 变量LDR r2, =rt_interrupt_from_threadSTR r0, [r2]_reswitch; 从参数 r1 里更新 rt_interrupt_to_thread 变量LDR r2, =rt_interrupt_to_threadSTR r1, [r2]; 触发 PendSV 异常,将进入 PendSV 异常处理函数里完成上下文切换LDR r0, =NVIC_INT_CTRLLDR r1, =NVIC_PENDSVSETSTR r1, [r0]BX LR
实现PendSV中断
在 Cortex-M3 里,PendSV 中断处理函数是 PendSV_Handler()。在 PendSV_Handler() 里完成线程切换的实际工作。

实现时钟节拍
有了开关全局中断和上下文切换功能的基础,RTOS 就可以进行线程的创建、运行、调度等功能了。有了时钟节拍支持,RT-Thread 可以实现对相同优先级的线程采用时间片轮转的方式来调度,实现定时器功能,实现 rt_thread_delay() 延时函数等等。
libcpu的移植需要完成的工作,就是确保rt_tick_increase()函数会在时钟节拍的中断里被周期性的调用,调用周期取决于 rtconfig.h 的宏 RT_TICK_PER_SECOND 的值。
BSP移植
相同的CPU架构在实际项目中,不同的板卡上可能使用相同的CPU架构,搭载不同的外设资源,完成不同的产品,所以也需要针对板卡做适配工作。
RTT提供了BSP抽象层来适配常见的板卡。如果希望在一个板卡上使用RTT内核,除了需要有相应的芯片架构的移植,还需要有针对板卡的移植,也就是实现一个基本的BSP。
主要任务是建立让操作系统运行的基本环境,需要完成的工作是:
- 初始化CPU内部寄存器,设定RAM工作时序。
- 实现时钟驱动及中断控制器驱动,完善中断管理。
- 实现串口和GPIO驱动。
- 初始化动态内存堆,实现动态堆内存管理。
相关文章:
RT-Thread 内核移植
内核移植 内核移植就是将RTT内核在不同的芯片架构、不同的板卡上运行起来,能够具备线程管理和调度,内存管理,线程间同步等功能。 移植可分为CPU架构移植和BSP(Board support package,板级支持包)移植两部…...
springboot中entity层、dto层、vo层通俗理解三者的区别
entity:这个类的属性是跟数据库字段一模一样的(驼峰命名),当我们使用MyBatis-Plus的时候经常用得到。 dto:用于后端接收前端返回的数据,一般是post请求,前端会给我们返回一个json对象ÿ…...
TypeScript_队列结构-链表
队列 队列(Queue),它是一种受限的线性表,先进先出(FIFO First In First Out) 受限之处在于它只允许在队列的前端(front)进行删除操作而在队列的后端(rear)进…...
STM32G0 定时器PWM DMA输出驱动WS2812配置 LL库
通过DMA方式输出PWM模拟LED数据信号 优点:不消耗CPU资源 缺点:占用内存较大 STM32CUBEMX配置 定时器配置 定时器通道:TIM3 CH2 分频:0 重装值:79,芯片主频64Mhz,因此PWM输出频率:…...
记录错误:Access denied for user ‘root‘@‘localhost‘ (using password:No) 解决方案
他说我没输入密码,但是我输入了啊??于是,我试了试这儿,password 一改就好了。。。 他原来是是我打的很快,快速生成的。。。。...
python爬虫实战(5)--获取小破站热榜
1. 分析地址 打开小破站热榜首页,查看响应找到如下接口地址 2. 编码 定义请求头 拿到标头 复制粘贴,处理成json 处理请求头代码如下: def format_headers_to_json():f open("data.txt", "r", encoding"utf-8") # 读…...
单目标应用:基于麻雀搜索算法SSA的微电网优化调度MATLAB
一、微网系统运行优化模型 参考文献: [1]李兴莘,张靖,何宇,等.基于改进粒子群算法的微电网多目标优化调度[J].电力科学与工程, 2021, 37(3):7 二、麻雀搜索算法简介 麻雀搜索算法 (Sparrow Search Algorithm, SSA) 是一种新型的群智能优化算法,于2020…...
C# easymodbus
库介绍 EasyModbus是用于 .NET 和 Java 平台上的Modbus TCP/UDP/RTU通讯协议库,支持多种编程语言,如C#、VB.NET、Java、C 与更多C#的变体,如Unity、Mono、.NET Core等等。 EasyModbus的Java版本至少需要Java 7,而C#版本兼容 .NE…...
HikariCP源码修改,使其连接池支持Kerberos认证
HikariCP-4.0.3 修改HikariCP源码,使其连接池支持Kerberos认证 修改后的Hikari源码地址:https://github.com/Raray-chuan/HikariCP-4.0.3 Springboot使用hikari连接池并进行Kerberos认证访问Impala的demo地址:https://github.com/Raray-chuan/springboot-kerberos-hikari-im…...
5分钟看明白rust mod use
rust把mod简单的事没说清,一片混乱,似懂非懂. mod语句查找只有一条规则:先找mod名1.rs,没有就我同名文件夹下的mod名1.rs,如果没有,就同名文件夹下的mod名1/mod.rs,再没有就error. 在mod.rs中,pub mod 文件…...
【Java核心知识】ThreadLocal相关知识
ThreadLocal 什么是ThreadLocal ThreadLoacal类可以为每个线程保存一份独有的变量,该变量对于每个线程都是独占的。实现原理为每个Thread类中包含一个ThreadHashMap,key为变量的对应的ThreadLocal对象,value为变量的值。 在日常使用中&…...
《Python基础教程(第三版)》阅读笔记 1
目录 1 快速上手:基础知识2 列表和元组3 字符串4 字典5 条件、循环及其他6 抽象7 再谈抽象8 异常9 魔法方法、特性和迭代器10 开箱即用 本文参考自《Beginning Python: from novice to professional》,中文版为《Python基础教程(第三版&#…...
坦克400 Hi4-T预售价28.5万元起,越野新能源好理解
8月25日,在以“智享蓉城,驭见未来”为主题的成都国际车展上,坦克品牌越野新能源再启新程,首次以全Hi4-T新能源阵容亮相展台,释放坦克品牌加速布局越野新能源的强烈信号。 Hi4-T架构首款落地车型坦克500 Hi4-T上市至今斩…...
我的Vim学习笔记(不定期更新)
2023年9月3日,周日上午 学到了啥就写啥,不定期更新 目录 字体 文件 标签页 分屏 调用系统命令 字体 设置字体大小 :set guifont字体:h字体大小 例如,:set guifontMonospace:h20 查询当前使用的字体和字体大小 :set guifont? 查看…...
spring boot项目生成容器并运行
一个安静的周末,shigen又睡懒觉了,上次说的拖延症的惩罚来了:早晚各100个健腹轮练习,早上的已经完成了。今天的文章来的有点晚,但是依旧保持质量。 springboot项目生成容器并运行 背景 将springboot项目打包成jar包&…...
Vue之html中特殊符号的展示
Vue之html中特殊符号的展示 在html中使用特殊字符时直接展示会报错,需要使用实体名称或者实体编号才能展示。 最常用的字符实体 显示结果 描述 实体名称 实体编号空格 < 小于号 < &…...
数据结构1 -- leetcode练习
三. 练习 3.1 时间复杂度 用函数 f ( n ) f(n) f(n) 表示算法效率与数据规模的关系,假设每次解决问题需要 1 微秒( 1 0 − 6 10^{-6} 10−6 秒),进行估算: 如果 f ( n ) n 2 f(n) n^2 f(n)n2 那么 1 秒能解决多…...
Java设计模式:四、行为型模式-05:备忘录模式
文章目录 一、定义:备忘录模式二、模拟场景:备忘录模式三、改善代码:备忘录模式3.1 工程结构3.2 备忘录模式模型结构图3.3 备忘录模式定义3.3.1 配置信息类3.3.2 备忘录类3.3.3 记录者类3.3.4 管理员类 3.4 单元测试 四、总结:备忘…...
MongoDB实验——MongoDB配置用户的访问控制
MongoDB 配置用户的访问控制 一、 实验原理 理解admin数据库:安装MongoDB时,会自动创建admin数据库,这是一个特殊数据库,提供了普通数据库没有的功能,例如,有些账户角色赋予用户操作多个数据库的权限&…...
golang逃逸技术分析
“ 申请到栈内存好处:函数返回直接释放,不会引起垃圾回收,对性能没有影响。 申请到堆上面的内存才会引起垃圾回收。 func F() { a : make([]int, 0, 20) b : make([]int, 0, 20000) l : 20 c : make([]int, 0, l)} “ a和b代码一样࿰…...
AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
【JVM】- 内存结构
引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...
【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
MySQL用户和授权
开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务: test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...
RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
