【教程】PyTorch Timer计时器
转载请注明出处:小锋学长生活大爆炸[xfxuezhang.cn]
OpenCV的Timer计时器可以看这篇:Python Timer和TimerFPS计时工具类
Timer作用说明:统计某一段代码的运行耗时。
直接上代码,开箱即用。
import time
import torch
import os
from enum import Enum, unique@unique
class TimerKeys(Enum):START = 'start' # 本次调用start函数时的时间戳END = 'end' # 本次调用end函数时的时间戳ELAPSED = 'elapsed' # 多次调用start和end函数的总耗时TOTAL = 'total' # 本次所耗end-start的时间HISTORY = 'history' # 保存每次的elapsedclass Timer(object):def __init__(self, device: torch.device):super(Timer, self).__init__()self._device = deviceself._record_sxf = {}def start(self, name, history=False):'''开始计时,通过name区分不同的计时器;在start时如果开启了history,就算下次start时没有开启history,history仍然会使用,除非显式调用了reset_all或reset_item,然后再调用start并不开启history,就不会记录。'''torch.cuda.current_stream(self._device).synchronize()if not self._record_sxf.get(name):self._record_sxf[name] = {}self._record_sxf[name][TimerKeys.TOTAL] = 0if history:self._record_sxf[name][TimerKeys.HISTORY] = []else:self._record_sxf[name].pop(TimerKeys.END)self._record_sxf[name].pop(TimerKeys.ELAPSED)self._record_sxf[name][TimerKeys.START] = time.time()def stop(self, name, store=True):'''计算指定name的本次耗时'''torch.cuda.current_stream(self._device).synchronize()if self._record_sxf.get(name) and self._record_sxf[name].get(TimerKeys.START):self._record_sxf[name][TimerKeys.END] = time.time()self._record_sxf[name][TimerKeys.ELAPSED] = self._record_sxf[name][TimerKeys.END] - self._record_sxf[name][TimerKeys.START]return self.store(name) if store else self._record_sxf[name][TimerKeys.ELAPSED]else:print(f'>> 不存在此计时器[{name}],请先start')return Nonedef store(self, name):'''计算指定name的累计耗时'''if not self._record_sxf.get(name):print(f'>> 不存在此计时器[{name}],请先start')return Noneif not self._record_sxf[name].get(TimerKeys.ELAPSED):print(f'>> 请先stop')return Noneself._record_sxf[name][TimerKeys.TOTAL] += self._record_sxf[name][TimerKeys.ELAPSED]if self._record_sxf[name].get(TimerKeys.HISTORY) is not None:self._record_sxf[name][TimerKeys.HISTORY].append(self._record_sxf[name][TimerKeys.ELAPSED])return self._record_sxf[name][TimerKeys.TOTAL]def show_store(self):'''显示所有项目的累计耗时'''print(self._record_sxf)def pretty_show_store(self):print("{", end='')for key, value in self._record_sxf.items():print(f"'{key}': {{")for enum_key, enum_value in value.items():print(f" {enum_key.name if isinstance(enum_key, Enum) else enum_key}: {enum_value},")print(" },")print("}")def get_store(self):return self._record_sxfdef peak_item(self, name, key=None):if key:return self._record_sxf[name].get(key) if self._record_sxf.get(name) else Nonereturn self._record_sxf.get(name)def reset_item(self, name):self._record_sxf.pop(name)def reset_all(self):self._record_sxf = {}if __name__ == '__main__':timer = Timer(torch.device('cuda:0'))timer.start('a')time.sleep(5)timer.stop('a')# {'a': {'total': 5.005435228347778, 'start': 1693419100.180317, 'end': 1693419105.1857522, 'elapsed': 5.005435228347778}}timer.show_store()print()timer.start('a')time.sleep(2)timer.stop('a')# {'a': {'total': 7.007752180099487, 'start': 1693419105.1859245, 'end': 1693419107.1882415, 'elapsed': 2.002316951751709}}timer.show_store()print()timer.start('b')time.sleep(3)timer.stop('b')# {'a': {'total': 7.007752180099487, 'start': 1693419105.1859245, 'end': 1693419107.1882415, 'elapsed': 2.002316951751709},# 'b': {'total': 3.0033228397369385, 'start': 1693419107.1884048, 'end': 1693419110.1917276, 'elapsed': 3.0033228397369385}}timer.show_store()timer.reset_all()print()timer.start('c')time.sleep(3)timer.start('d')time.sleep(3)timer.stop('d')# {'c': {'total': 0, 'start': 1693419110.1919253},# 'd': {'total': 3.003229856491089, 'start': 1693419113.1927958, 'end': 1693419116.1960256, 'elapsed': 3.003229856491089}}timer.show_store()timer.stop('c')# {'c': {'total': 6.0042500495910645, 'start': 1693419110.1919253, 'end': 1693419116.1961753, 'elapsed': 6.0042500495910645},# 'd': {'total': 3.003229856491089, 'start': 1693419113.1927958, 'end': 1693419116.1960256, 'elapsed': 3.003229856491089}}timer.show_store()timer.reset_all()print()timer.start('e')time.sleep(3)timer.start('f')time.sleep(3)timer.stop('e')# {'e': {'total': 6.004979848861694, 'start': 1693419433.8564444, 'end': 1693419439.8614242, 'elapsed': 6.004979848861694},# 'f': {'total': 0, 'start': 1693419436.859731}}timer.show_store()timer.stop('f')# {'e': {'total': 6.004979848861694, 'start': 1693419433.8564444, 'end': 1693419439.8614242, 'elapsed': 6.004979848861694},# 'f': {'total': 3.00180983543396, 'start': 1693419436.859731, 'end': 1693419439.8615408, 'elapsed': 3.00180983543396}}timer.pretty_show_store()
函数调用示例:
timer = Timer(torch.device('cuda:0'))timer.start('a')# xxxxxxtime_used = timer.stop('a')timer.show_store()
相关文章:
【教程】PyTorch Timer计时器
转载请注明出处:小锋学长生活大爆炸[xfxuezhang.cn] OpenCV的Timer计时器可以看这篇:Python Timer和TimerFPS计时工具类 Timer作用说明:统计某一段代码的运行耗时。 直接上代码,开箱即用。 import time import torch import os …...

因果推断(六)基于微软框架dowhy的因果推断
因果推断(六)基于微软框架dowhy的因果推断 DoWhy 基于因果推断的两大框架构建:「图模型」与「潜在结果模型」。具体来说,其使用基于图的准则与 do-积分来对假设进行建模并识别出非参数化的因果效应;而在估计阶段则主要…...

探索隧道ip如何助力爬虫应用
在数据驱动的世界中,网络爬虫已成为获取大量信息的重要工具。然而,爬虫在抓取数据时可能会遇到一些挑战,如IP封禁、访问限制等。隧道ip(TunnelingProxy)作为一种强大的解决方案,可以帮助爬虫应用更高效地获…...
题目:2629.复合函数
题目来源: leetcode题目,网址:2629. 复合函数 - 力扣(LeetCode) 解题思路: 倒序遍历计算。 解题代码: /*** param {Function[]} functions* return {Function}*/ var compose function(…...

【实训项目】精点考研
1.设计摘要 如果说高考是一次能够改变命运的考试,那么考研应该是另外一次。为什么那么多人都要考研呢?从中国教育在线官方公布是考研动机调查来看,大家扎堆考研的原因大概集中在这6个方面:本科就业压力大,提升竞争力、…...

软件测试Pytest实现接口自动化应该如何在用例执行后打印日志到日志目录生成日志文件?
Pytest可以使用内置的logging模块来实现接口自动化测试用例执行后打印日志到日志目录以生成日志文件。以下是实现步骤: 1、在pytest配置文件(conftest.py)中,定义一个日志输出路径,并设置logging模块。 import loggi…...

深入理解作用域、作用域链和闭包
🎬 岸边的风:个人主页 🔥 个人专栏 :《 VUE 》 《 javaScript 》 ⛺️ 生活的理想,就是为了理想的生活 ! 目录 📚 前言 📘 1. 词法作用域 📖 1.2 示例 📖 1.3 词法作用域的…...

7款适合3D建模和渲染的GPU推荐
选择一款完美的 GPU 并不是一件容易的事;您不仅必须确保有特定数量的线程和内核来处理图像,而且还应该有足够的 RAM。 这是因为 3D 渲染是一个活跃的工作过程,因为您必须坐在 PC 前并持续与软件交互。为了在 3D 场景中积极工作,您…...
边缘计算物联网网关在机械加工行业的应用及作用分享
随着工业4.0的推进,物联网技术正在逐渐渗透到各个行业领域。机械加工行业作为制造业的基础领域之一,其生产过程的自动化、智能化水平直接影响到产品质量和生产效率。边缘计算物联网网关作为物联网技术的重要组成部分,在机械加工行业中发挥着越…...

(笔记六)利用opencv进行图像滤波
(1)自定义卷积核图像滤波 import numpy as np import matplotlib.pyplot as plt import cv2 as cvimg_path r"D:\data\test6-6.png" img cv.imread(img_path)# 图像滤波 ker np.ones((6, 6), np.float32)/36 # 构建滤波器(卷积…...

WPF C# .NET7 基础学习
学习视频地址:https://www.bilibili.com/video/BV1hx4y1G7C6?p3&vd_source986db470823ebc16fe0b3d235addf050 开发工具:Visual Studio 2022 Community 基础框架:.Net 6.0 下载创建过程略 .Net和.Framework 区别是Net是依赖项ÿ…...
QT里使用sqlite的问题,好多坑
1. 我使用sqlite,开发机上好好的,测试机上却不行。后来发现是缺少驱动(Driver not loaded Driver not loaded),代码检查了又检查,发现应该是缺少dll文件(系统不提示,是自己使用 QMes…...

openGauss学习笔记-59 openGauss 数据库管理-相关概念介绍
文章目录 openGauss学习笔记-59 openGauss 数据库管理-相关概念介绍59.1 数据库59.2 表空间59.3 模式59.4 用户和角色59.5 事务管理 openGauss学习笔记-59 openGauss 数据库管理-相关概念介绍 59.1 数据库 数据库用于管理各类数据对象,与其他数据库隔离。创建数据…...

Nginx安装与部署
文章目录 一,说明二,下载三,Windows下安装1,安装2,启动3,验证 四,Linux下安装1,安装2,启动3,验证 五,Nginx配置 一,说明 Nginx是一款高性能Web和反向代理服务器,提供内存少,高并发,负载均衡和反向代理服务,支持windos和linux系统 二,下载 打开浏览器,输入地址: https://ngin…...

Linux中Tomcat发布war包后无法正常访问非静态资源
事故现象 在CentOS8中安装完WEB环境,首次部署WEB项目DEMO案例,发现可以静态的网页内容, 但是无法向后台发送异步请求,全部出现404问题,导致数据库数据无法渲染到界面上。 原因分析 CentOS请求中提示用来获取资源的连…...

大数据、AI和云原生:引领未来软件开发的技术演进
文章目录 **1. 数据驱动的创新:****2. 智能化应用的兴起:****3. 云原生的敏捷和可扩展性:****4. 实时性和即时性:****5. 数据隐私和安全:****6. 跨平台和跨设备:****7. 自动化和智能编程:****8.…...

Text-to-SQL小白入门(四)指令进化大模型WizardLM
摘要 本文主要对大模型WizardLM的基本信息进行了简单介绍,展示了WizardLM取得的优秀性能,分析了论文的核心——指令进化方法。 论文概述 基本信息 英文标题:WizardLM: Empowering Large Language Models to Follow Complex Instructions中…...

浅谈红队资产信息收集经验
文章目录 子公司资产收集备案号|官网收集子域名|ip收集fofa灯塔ARLX情报社区 资产确认目录扫描Google Hacking绕过CDNnmap端口扫描参数技巧其他常用工具 子公司资产收集 红蓝对抗中往往只会给你目标企业的名称,以及对应的靶标系统地址,而很少有直接从靶标…...

list根据对象中某个字段属性去重Java流实现
list根据对象中某个字段属性去重Java流实现? 在Java的流(Stream)中,你可以使用distinct方法来实现根据对象中某个字段属性去重的功能。要实现这个功能,你需要重写对象的hashCode和equals方法,以确保相同字段属性的对象被认为是相…...

软件架构设计(三) B/S架构风格-层次架构(一)
层次架构风格从之前的两层C/S到三层C/S,然后演化为三层B/S架构,三层B/S架构之后仍然在往后面演化,我们来看一下层次架构演化过程中都有了哪些演化的架构风格呢? 而我们先简单了解一下之前的层次架构风格中分层的各个层次的作用。 表现层:由于用户进行交互,比如MVC,MVP,…...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...

手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...

【kafka】Golang实现分布式Masscan任务调度系统
要求: 输出两个程序,一个命令行程序(命令行参数用flag)和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽,然后将消息推送到kafka里面。 服务端程序: 从kafka消费者接收…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...

376. Wiggle Subsequence
376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...

如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...

LLMs 系列实操科普(1)
写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...