R语言Meta分析核心技术

Meta分析是针对某一科研问题,根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法,对来源不同的研究成果进行收集、合并及定量统计分析的方法,最早出现于“循证医学”,现已广泛应用于农林生态,资源环境等方面。R语言拥有完整有效的数据处理、统计分析与保存机制,可以对数据直接进行分析和显示,命令格式简单、结果可读性强,包含众多针对Meta分析软件包,是进行Meta整合分析及评价的有效平台。
Meta分析的选题与检索
1、Meta分析的选题与文献检索
1) 什么是Meta分析
2) Meta分析的选题策略
3) 精确检索策略,如何检索全、检索准
4) 文献的管理与清洗,如何制定文献纳入排除标准
5) 文献数据获取技巧,研究课题探索及科学问题的提出
6) 文献计量分析CiteSpace、VOSViewer、R bibliometrix及研究热点分析

Meta分析与R语言数据清洗及统计方法
2、Meta分析的常用软件/R语言基础及统计学基础
1) R语言做Meta分析的优势及其《Nature》、《Science》经典案例应用
2) R语言基本操作与数据清洗方法
3) 统计学基础和常用统计量计算(sd\se\CI)、三大检验(T检验、卡方检验和F检验)
4) 传统统计学与Meta分析的异同
5) R语言Meta分析常用包及相关插件讲解
从自编程计算到调用Meta包(meta、metafor、dmetar、esc、metasens、metamisc、meta4diag、gemtc、robvis、netmeta、brms等),全程分析如何进行meta计算、meta诊断、贝叶斯meta、网状meta、亚组分析、meta回归及作图。

R语言Meta分析与作图
3、R语言Meta效应值计算
1) R语言Meta分析的流程
2) 各类meta效应值计算、自编程序和调用函数的对比
连续资料的lnRR、MD与SMD
分类资料的RR和OR
3) R语言meta包和metafor包的使用
4) 如何用R基础包和ggplot2绘制漂亮的森林图

R语言Meta回归分析
4、R语言Meta分析与混合效应模型(分层模型)构建
1) Meta分析的权重计算
2) Meta分析中的固定效应、随机效应
3) 如何对Meta模型进行统计检验和构建嵌套模型、分层模型(混合效应)
4) Meta回归和普通回归、混合效应模型的对比及结果分析
5) 使用Rbase和ggplot2绘制Meta回归图

R语言Meta诊断分析
5、R语言Meta诊断进阶
1) Meta诊断分析(t2、I2、H2、R2、Q、QE、QM等统计量)
2) 异质性检验及发表偏移、漏斗图、雷达图、发表偏倚统计检验
1) 敏感性分析、增一法、留一法、增一法、Gosh图
2) 风险分析、失安全系数计算
3) Meta模型比较和模型的可靠性评价
4) Bootstrap重采样方法评估模型的不确定性
5) 如何使用多种方法对文献中的SD、样本量等缺失值的处理


R语言Meta分析的不确定性
6、R语言Meta分析的不确定性
1) 网状Meta分析
2) 贝叶斯理论和蒙特拉罗马尔可夫链MCMC
3) 如何使用MCMC优化普通回归模型和Meta模型参数
4) R语言贝叶斯工具Stan、JAGS和brms
5) 贝叶斯Meta分析及不确定性分析

机器学习在Meta分析中的应用
7、机器学习在Meta分析中的应用
1) 机器学习基础以及Meta机器学习的优势
2) Meta加权随机森林(MetaForest)的使用
3) 使用Meta机器学习和传统机器学习对文献中的大数据训练与测试
4) 如何判断Meta机器学习使用随机效应还是固定效应以及超参数的优化
5) 使用Meta机器学习进行驱动因子分析、偏独立分析PDP

原文阅读:全流程R语言Meta分析核心技术
相关文章:
R语言Meta分析核心技术
Meta分析是针对某一科研问题,根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法,对来源不同的研究成果进行收集、合并及定量统计分析的方法,最早出现于“循证医学”,现已广泛应用于农林生态,资源环境等方面。…...
Oracle数据库尚硅谷学习笔记
文章目录 Oracle数据库体系结构简介补充SQL初步导入sql文件别名连接符distinct去重的坑 过滤和排序数据日期格式比较运算其它比较运算符逻辑运算优先级排序 单行函数SQL中不同类型的函数单行函数字符数值日期转换通用 使用条件表达式嵌套查询 多表查询等值连接非等值连接左外连…...
CG MAGIC进行实体渲染后!分析渲染器CR和VR的区别之处!
新手小白来说,如何选择渲染器,都会提出疑问? 渲染效果图究竟用CR渲染器还是VR渲染器呢? 今天,CG MAGIC小编通过一个真实的项目场景,实例渲染之后,CR渲染器和VR渲染器区别有哪几点? 1…...
Ubuntu下Python3与Python2相互切换
参考文章:https://blog.csdn.net/Nicolas_shen/article/details/124144931 设置优先级 sudo update-alternatives --install /usr/bin/python python /usr/bin/python2 100 sudo update-alternatives --install /usr/bin/python python /usr/bin/python3 200...
【深度学习】实验07 使用TensorFlow完成逻辑回归
文章目录 使用TensorFlow完成逻辑回归1. 环境设定2. 数据读取3. 准备好placeholder4. 准备好参数/权重5. 计算多分类softmax的loss function6. 准备好optimizer7. 在session里执行graph里定义的运算 附:系列文章 使用TensorFlow完成逻辑回归 TensorFlow是一种开源的…...
2023-09-04 Linux 让shell编译脚本里面设置的环境变量改变kernel里面驱动文件的宏定义值方法,我这里用来做修改固件版本
一、原生的读取版本接口是/proc/version,我这里需要提供获取固件版本号的api给app,因为版本号会经常需要修改,如果每次都到kernel下修改比较麻烦,我这里是想在编译脚本里面对版本号进行修改,这样方便一点。 二、主要修…...
Python操作Excel实战:Excel行转列
# 1、原始数据准备 样例数据准备 地区1m2-5m6-10m11-20m21-40m地区单价计费单位费用最小值费用最大值北京13012011010090 天津13012011010090 石家庄13012011010090 保定140130120110100 张家口170150130120110 邢台1401201101…...
java实现迭代器模式
迭代器模式(Iterator Pattern)是一种行为型设计模式,它提供一种方法来顺序访问一个聚合对象(如列表、集合、数组等)中的元素,而不暴露聚合对象的内部表示。迭代器模式通常包括以下角色:迭代器&a…...
C++day7模板、异常、auto关键字、lambda表达式、数据类型转换、STL、list、文件操作
作业 封装一个学生的类,定义一个学生这样类的vector容器, 里面存放学生对象(至少3个) 再把该容器中的对象,保存到文件中。 再把这些学生从文件中读取出来,放入另一个容器中并且遍历输出该容器里的学生。 #include …...
【校招VIP】产品分析之活动策划宣传
考点介绍: 产品的上线运营是非常重要的。应该来说好的产品都是运营出来的,在一运营过程中难免会依靠策划活动来提高产品知名度、用户数。用户粘度等等指标一,如何策划一个成功的活动就显得非常重要。 产品分析之活动策划宣传-相关题目及解析…...
node基础之一:fs 模块
概念:文件的创建、删除、重命名、移动、写入、读取等 const fs require("fs");// 写入 fs.writeFile("./demo.txt", "hello", (err) > {}); fs.writeFileSync();// 追加 fs.appendFile("./demo.txt", "hello&quo…...
如何快速搭建母婴行业的微信小程序?
如果你想为你的母婴行业打造一个独特的小程序,但没有任何编程经验,别担心!现在有许多小程序制作平台提供了简单易用的工具,让你可以轻松地建立自己的小程序。接下来,我将为你详细介绍搭建母婴行业小程序的步骤。 首先&…...
【科普向】Jmeter 如何测试接口保姆式教程
现在对测试人员的要求越来越高,不仅仅要做好功能测试,对接口测试的需求也越来越多!所以也越来越多的同学问,怎样才能做好接口测试? 要真正的做好接口测试,并且弄懂如何测试接口,需要从如下几个…...
阿里云2核4G服务器5M带宽5年费用价格明细表
阿里云2核4G服务器5M带宽可以选择轻量应用服务器或云服务器ECS,轻量2核4G4M带宽服务器297元一年,2核4G云服务器ECS可以选择计算型c7、c6或通用算力型u1实例等,买5年可以享受3折优惠,阿腾云分享阿里云服务器2核4G5M带宽五年费用表&…...
【图解RabbitMQ-2】图解JMS规范与AMQP协议是什么
🧑💻作者名称:DaenCode 🎤作者简介:CSDN实力新星,后端开发两年经验,曾担任甲方技术代表,业余独自创办智源恩创网络科技工作室。会点点Java相关技术栈、帆软报表、低代码平台快速开…...
springboot整合mybatis实现增删改查(xml)--项目阶段1
目录 一、前言 二、创建项目 创建MySQL数据库和表 创建springboot项目 本文总体代码结构图预览 三、编写代码 (一)新建实体层属性类 (二)新建数据层mapper接口 (三)新建mapper的映射SQL(…...
springboot文件上传异步报错
因为迁移的生产环境,在新的服务器发生了之前没有遇到的问题,这种问题是在异步文件上传的时候才会出现 错误信息如下 16:17:50.009 ERROR c.w.einv.minio.service.impl.MinioFileServiceImpl - 文件上传错误! java.io.FileNotFoundException: /applicati…...
error: unable to unlink old ‘.gitlab-ci.yml‘: Permission denied
#gitlab-runner 执行代码git pull origin xxx 更新时候报 error: unable to unlink old ‘.gitlab-ci.yml’: Permission denied 问题环境:centos 部署gitlab-runner 执行脚本方式 选的shell 产生问题的原因:gitlab-runner程序进程占用锁定了.gitlab-ci…...
AJAX学习笔记3练习
AJAX学习笔记2发送Post请求_biubiubiu0706的博客-CSDN博客 1.验证用户名是否可用 需求,用户输入用户名,失去焦点-->onblur失去焦点事件,发送AJAX POST请求,验证用户名是否可用 新建表 前端页面 WEB-INF下新建lib包引入依赖,要用JDBC 后端代码 package com.web;import jav…...
springboot实战(五)之sql业务日志输出,重要
目录 环境: 一、mybatis-plus之sql分析日志输出 1.配置 2.验证 3.高级输出方式 二、业务日志输出到文件 1.添加log4j2依赖 2.排除logback依赖 3.新增log4j2的配置文件 4.添加配置 5.启动测试 6.给日志请求加个id 6.1、过滤器filter实现 6.2、测试 6.3、…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
C++:多态机制详解
目录 一. 多态的概念 1.静态多态(编译时多态) 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1).协变 2).析构函数的重写 5.override 和 final关键字 1&#…...
无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...
Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践
在 Kubernetes 集群中,如何在保障应用高可用的同时有效地管理资源,一直是运维人员和开发者关注的重点。随着微服务架构的普及,集群内各个服务的负载波动日趋明显,传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...
