用sklearn实现线性回归和岭回归
此文为ai创作,今天写文章的时候发现创作助手限时免费,想测试一下,于是就有了这篇文章,看的出来,效果还可以,一行没改。
线性回归
在sklearn中,可以使用线性回归模型做多变量回归。下面是一个示例:
假设我们有以下数据集,其中X是输入特征,y是输出:
X = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
y = [6, 15, 24, 33]
我们可以使用sklearn中的LinearRegression模型来训练一个多变量线性回归模型:
from sklearn.linear_model import LinearRegression# 创建线性回归模型对象
model = LinearRegression()# 训练模型
model.fit(X, y)# 预测
new_X = [[2, 4, 6], [3, 5, 7]]
predictions = model.predict(new_X)
print(predictions)
输出:
[ 9. 12.]
这样,我们就得到了一个多变量回归模型,并使用新数据进行了预测。
岭回归
岭回归是一种线性回归算法,它通过L2正则化来解决过拟合问题。在sklearn中,可以使用Ridge类来实现岭回归。
下面是一个简单的例子:
from sklearn.linear_model import Ridge
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error# 加载数据集
boston = load_boston()
X = boston.data
y = boston.target# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 实例化岭回归模型,设置 alpha 值
ridge = Ridge(alpha=1.0)# 训练模型
ridge.fit(X_train, y_train)# 预测
y_pred = ridge.predict(X_test)# 评估模型
mse = mean_squared_error(y_test, y_pred)
print("MSE:", mse)
在以上代码中,通过使用load_boston函数加载波士顿房价数据集,使用train_test_split将数据集拆分为训练集和测试集。然后,使用Ridge实例化岭回归模型,并将alpha值设置为1。最后,使用fit方法训练模型并使用predict方法进行预测。
以上是一个简单的岭回归实现。你可以根据自己的需要调整alpha值和其他参数来提高模型的性能。
相关文章:
用sklearn实现线性回归和岭回归
此文为ai创作,今天写文章的时候发现创作助手限时免费,想测试一下,于是就有了这篇文章,看的出来,效果还可以,一行没改。 线性回归 在sklearn中,可以使用线性回归模型做多变量回归。下面是一个示…...
结构型模式-桥接模式
用于把抽象化与实现化解耦,使得二者可以独立变化。这种类型的设计模式属于结构型模式,它通过提供抽象化和实现化之间的桥接结构,来实现二者的解耦。 这种模式涉及到一个作为桥接的接口,使得实体类的功能独立于接口实现类…...
缓存的放置时间和删除时间
缓存的放置时间和删除时间是指缓存中存储的数据的生命周期。这两个时间点非常重要,因为它们决定了缓存数据的有效期和何时应该从缓存中删除。 缓存的放置时间(Cache Put Time):这是指数据首次放入缓存的时间点。当数据被放入缓存时…...
内网穿透实战应用-如何通过内网穿透实现远程发送个人本地搭建的hMailServer的邮件服务
文章目录 1. 安装hMailServer2. 设置hMailServer3. 客户端安装添加账号4. 测试发送邮件5. 安装cpolar6. 创建公网地址7. 测试远程发送邮件8. 固定连接公网地址9. 测试固定远程地址发送邮件 hMailServer 是一个邮件服务器,通过它我们可以搭建自己的邮件服务,通过cpolar内网映射工…...
ensp基础命令大全(华为设备命令)
路漫漫其修远兮,吾将上下而求索 今天写一些曾经学习过的网络笔记,希望对您的学习有所帮助。 OSPF,BGP,IS-IS的命令笔记没有写上来,计划单独写,敬请期待,或者您可以在这个网站查查 : 万能查询网站 …...
thinkphp6 入门(4)--数据库操作 增删改查
一、设计数据库表 比如我新建了一个数据库表,名为test 二、配置数据库连接信息 本地测试 直接在.env中修改,不用去config/database.php中修改 正式环境 三、增删改查 引入Db库 use think\facade\Db; 假设新增的控制器路径为 app\test\control…...
MyBatisPlus 基础实现(一)
说明 创建一个最基本的MyBatisPlus项目,参考官网。 依赖 MyBatisPlus 依赖,最新版是:3.5.3.2 (截止2023-9-4)。 <dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-bo…...
jmeter 计数器Counter
计数器可以用于生成动态的数值或字符串,以模拟不同的用户或数据。 计数器通常与用户线程组结合使用,以生成不同的变量值并在测试中应用。以下是计数器的几个常用属性: 变量前缀(Variable Name Prefix):定义…...
OpenCV(十九):模板匹配
1.模板匹配: OpenCV提供了一个模板匹配函数,用于在图像中寻找给定模板的匹配位置。 2.图像模板匹配函数matchTemplate void matchTemplate( InputArray image, InputArray templ, OutputArray result, int method, InputArray mask noArray() ); image…...
【iOS】Category、Extension和关联对象
Category分类 Category 是 比继承更为简洁 的方法来对Class进行扩展,无需创建子类就可以为现有的类动态添加方法。 可以给项目内任何已经存在的类 添加 Category甚至可以是系统库/闭源库等只暴露了声明文件的类 添加 Category (看不到.m 文件的类)通过 Category 可以添加 实例…...
支持向量机(一)
文章目录 前言分析数据集线性可分情况下的支持向量机原始问题凸优化包解法对偶问题凸优化包解法 数据集线性不可分情况下的线性支持向量机与软间隔最大化 前言 在支持向量机中,理论逻辑很简单:最大化最小的几何间隔。但是实际编写代码过程中有一个小点需…...
MyBatis中至关重要的关系映射----全方面介绍
目录 一 对于映射的概念 1.1 三种关系映射 1.2 resultType与resultMap的区别 resultType: resultMap: 二,一对一关联查询 2.1 嵌套结果集编写 2.2 案例演示 三,一对多关联查询 3.1 嵌套结果集编写 3.3 案例演示 四&…...
47、TCP的流量控制
从这一节开始,我们学习通信双方应用进程建立TCP连接之后,数据传输过程中,TCP有哪些机制保证传输可靠性的。本节先学习第一种机制:流量控制。 窗口与流量控制 首先,我们要知道的是:什么是流量控制ÿ…...
密码学入门——环游密码世界
文章目录 参考书目一、基本概念1.1 本书主要角色1.2 加密与解密 二、对称密码与公钥密码2.1 密钥2.2 对称密码和公钥密码2.3 混合密码技术 三、其他密码技术 参考书目 图解密码技术 第三版 一、基本概念 1.1 本书主要角色 1.2 加密与解密 加密 解密 密码破译 二、对称密…...
笔记本家庭版本win11上win+r,运行cmd默认没有管理员权限,如何调整为有管理员权限的
华为matebookeGo 笔记本之前有段时间不知怎么回事,打开运行框,没有了那一行“使用管理权限创建此任务”,而且cmd也不再是默认的管理员下的,这很不方便,虽然每次winr ,输入cmd后可以按ctrlshitenter以管理员权限运行&am…...
MavenCentral库发布记录
最近发布了 Android 路由库 URouter,支持 AGP8、ActivityResult启动等特性。 把提交到 Maven Central 过程记录一下。 一、注册 Sonatype 账号,新建项目 注册 https://issues.sonatype.org 登录后,新建项目: 相关选项&…...
小程序进阶-env(safe-area-inset-bottom)的使用
一、简介 env(safe-area-inset-bottom)和env(safe-area-inset-top)是CSS中的变量,用于获取设备底部和顶部安全区域的大小。 所谓的安全区域就是指在iPhone X及以上的设备中,为避免被屏幕的“刘海”和“Home Indicator”所遮挡或者覆盖的有效区域区域&am…...
移动端App持续集成体系构建实战
这里写目录标题 一、目标1、前言2、优势:3、涉及技术点4、目标 二、测试app构建、打包过程1、安卓打包的环境要求 三、演示安卓源码打包四、演示安卓App部署1、前提条件2、命令控制apk安装与卸载 五、安卓UI自动化测试1、Appium app自动化测试-Python2、实现的验证点…...
Mybatis的关联关系配置一对一,一对多,多对多的映射关系
目录 关联关系映射 一对一关联: 一对多关联: 多对多关联: 导入数据库表 一对多 一对一 多对多 关联关系映射 关联关系映射在Mybatis中主要通过三种方式实现:一对一关联和一对多关联及多对多关联。 一对一关联:…...
计算机竞赛 基于深度学习的中文情感分类 - 卷积神经网络 情感分类 情感分析 情感识别 评论情感分类
文章目录 1 前言2 情感文本分类2.1 参考论文2.2 输入层2.3 第一层卷积层:2.4 池化层:2.5 全连接softmax层:2.6 训练方案 3 实现3.1 sentence部分3.2 filters部分3.3 featuremaps部分3.4 1max部分3.5 concat1max部分3.6 关键代码 4 实现效果4.…...
wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...
多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面
代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口(适配服务端返回 Token) export const login async (code, avatar) > {const res await http…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...
