当前位置: 首页 > news >正文

PgSQL-并行查询系列-介绍[译]

PgSQL-并行查询系列-介绍

现代CPU模型拥有大量的CPU核心。多年来,数据库应用程序都是并发向数据库发送查询的。查询处理多个表的行时,若可以使用多核,则可以客观地提升性能。PgSQL 9.6引入了并行查询的新特性,开启并行查询后可以大幅提升性能。

1、局限性

1)若所有CPU核心已经饱和,则不要启动并行查询。并行执行会从其他查询中窃取CPU时间,并增加响应时间

2)进一步需要注意:并行处理会显著增加内存使用(需要注意work_mem的值)。因为,每个hash join或者排序操作都会使用work_mem大小的内存。

3)低延迟的OLTP查询并不能通过并行显著提升性能。特别是仅返回1行的查询,若启用并行,性能会变得特烂。

4)并行执行仅支持没有锁谓词的SELECT查询

5)不支持cursor和会挂起的查询

6)windowed 函数和ordered-set聚合函数都不是并行的

7)对于负载已达IO瓶颈的,并没有啥好处

8)没有并行排序算法。然而,排序查询在某些方面仍然可以并行

9)将CTE(WITH...)替换为sub-select以支持并行执行

10)FDW还不支持并行(后面版本可以,注意哪个版本支持)

11)full outer join不支持

12)客户端设置了max_rows,禁止并行执行

13)如果查询中使用了没有标记为PARALLEL SAFE的函数,那他就是单线程执行

14)SERIALIZABLE事务隔离级别禁用并行执行

2、并行顺序扫描

并行顺序扫描很快,原因可能不是并行读,而是将数据访问分散到多个CPU上。现代操作系统给PgSQL的数据文件提供了很好的缓冲机制。预取允许从存储中获取一个块,而不仅是PgSQL请求的块。因此查询性能限制往往不在IO上,它消耗CPU周期:从表数据页中逐行读取;比较行值和WHERE条件

我们执行一个简单查询:

tpch=# explain analyze select l_quantity as sum_qty from lineitem where l_shipdate <= date '1998-12-01' - interval '105' day;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------
Seq Scan on lineitem (cost=0.00..1964772.00 rows=58856235 width=5) (actual time=0.014..16951.669 rows=58839715 loops=1)
Filter: (l_shipdate <= '1998-08-18 00:00:00'::timestamp without time zone)
Rows Removed by Filter: 1146337
Planning Time: 0.203 ms
Execution Time: 19035.100 ms

一个顺序扫描,没有聚合,需要产生大量行。因此该查询被一个CPU核心执行。添加聚合SUM()后,可以清晰的看到有2个进程帮助查询:

explain analyze select sum(l_quantity) as sum_qty from lineitem where l_shipdate &lt;= date '1998-12-01' - interval '105' day;
QUERY PLAN 
----------------------------------------------------------------------------------------------------------------------------------------------------
Finalize Aggregate (cost=1589702.14..1589702.15 rows=1 width=32) (actual time=8553.365..8553.365 rows=1 loops=1)
-&gt; Gather (cost=1589701.91..1589702.12 rows=2 width=32) (actual time=8553.241..8555.067 rows=3 loops=1)
Workers Planned: 2
Workers Launched: 2
-&gt; Partial Aggregate (cost=1588701.91..1588701.92 rows=1 width=32) (actual time=8547.546..8547.546 rows=1 loops=3)
-&gt; Parallel Seq Scan on lineitem (cost=0.00..1527393.33 rows=24523431 width=5) (actual time=0.038..5998.417 rows=19613238 loops=3)
Filter: (l_shipdate &lt;= '1998-08-18 00:00:00'::timestamp without time zone)
Rows Removed by Filter: 382112
Planning Time: 0.241 ms
Execution Time: 8555.131 ms

性能提升2.2倍。

3、并行聚合

“Parallel Seq Scan”节点为partial aggregation提供行。“Partial Aggregate”节点先对SUM()进行一次操作。最后“Gather”节点汇总每个进程的SUM值。“Finalize Aggregate”节点进行最后计算。如果你使用了聚合函数,不要忘记标记他们为“parallel safe”。

4、进程个数

可以不重启服务,增加并行进程个数:

alter system set max_parallel_workers_per_gather=4;
select * from pg_reload_conf();
Now, there are 4 workers in explain output:
tpch=# explain analyze select sum(l_quantity) as sum_qty from lineitem where l_shipdate &lt;= date '1998-12-01' - interval '105' day;
QUERY PLAN 
----------------------------------------------------------------------------------------------------------------------------------------------------
Finalize Aggregate (cost=1440213.58..1440213.59 rows=1 width=32) (actual time=5152.072..5152.072 rows=1 loops=1)
-&gt; Gather (cost=1440213.15..1440213.56 rows=4 width=32) (actual time=5151.807..5153.900 rows=5 loops=1)
Workers Planned: 4
Workers Launched: 4
-&gt; Partial Aggregate (cost=1439213.15..1439213.16 rows=1 width=32) (actual time=5147.238..5147.239 rows=1 loops=5)
-&gt; Parallel Seq Scan on lineitem (cost=0.00..1402428.00 rows=14714059 width=5) (actual time=0.037..3601.882 rows=11767943 loops=5)
Filter: (l_shipdate &lt;= '1998-08-18 00:00:00'::timestamp without time zone)
Rows Removed by Filter: 229267
Planning Time: 0.218 ms
Execution Time: 5153.967 ms

我们将并发进程由2改成了4,但是查询仅快1.6599倍。实际上,我们有2个进程+一个leader,配置改好成为4+1。并行最大提升可以:5/3=1.66倍。

5、如何工作?

查询执行总是从“leader”进程开始。Leader进程执行所有非并行动作。其他进程执行相同查询,称为“worker”进程。并行利用Dynamic Backgroud workers基础架构(9.4引入)执行。因此创建3个工作进程的查询可能比传统执行快4倍。

Worker进程使用消息队列(基于共享内存)和leader进行通信。每个进程有2个队列:一个为errors,另一个是tuples。

5、进程使用个数

1)max_parallel_workers_per_gather是workers进程数的最小限制

2)查询执行使用的workers限制为max_parallel_workes

3)最上层的限制是max_worker_processes:后台进程的总数

分配进程失败,会导致使用单进程执行。查询规划器会根据表或索引大小来增加worker个数。min_parallel_table_scan_size和min_parallel_index_scan_size控制该行为。

set min_parallel_table_scan_size='8MB'
8MB table =&gt; 1 worker
24MB table =&gt; 2 workers
72MB table =&gt; 3 workers
x =&gt; log(x / min_parallel_table_scan_size) / log(3) + 1 worker

表比min_parallel_(index|table)_scan_size值每大3倍,PG增加一个worker进程。Workers进程个数不是基于成本的。循环依赖使得复杂的实现变得困难。相反,规划者使用简单的规则。

可以通过ALTER TABLE … SET (parallel_workers = N)来对某个表指定并行进程数。

6、为什么不使用并行

除了并行限制外,PG还会检查代价:

parallel_setup_cost:避免短查询的并行执行。模拟用于内存设置、流程启动和初始通信的时间

parallel_tuple_cost:leader和worker之间通信可能花费很长时间。时间和worker发送的记录数成正比。参数对通信成本进行建模。

7、Nested Loop Join

PgSQL9.6+可以以并行形式执行“Nested loop”。

explain (costs off) select c_custkey, count(o_orderkey)from    customer left outer join orders onc_custkey = o_custkey and o_comment not like '%special%deposits%'group by c_custkey;QUERY PLAN                                      
--------------------------------------------------------------------------------------Finalize GroupAggregateGroup Key: customer.c_custkey-&gt;  Gather MergeWorkers Planned: 4-&gt;  Partial GroupAggregateGroup Key: customer.c_custkey-&gt;  Nested Loop Left Join-&gt;  Parallel Index Only Scan using customer_pkey on customer-&gt;  Index Scan using idx_orders_custkey on ordersIndex Cond: (customer.c_custkey = o_custkey)Filter: ((o_comment)::text !~~ '%special%deposits%'::text)

Gather发生在最后阶段,因此“Nested Loop Left Join”是并行操作。“Parallel Index Only Scan”在版本10才可以使用,和并行顺序扫描类似。c_custkey = o_custkey条件读取每个customer行的order列,因此不是并行。

8、Hash Join

PgSQL11中每个worker构建自己的hash table。因此,4+ workers不能提升性能。新的实现方式:使用一个共享hash table。每个worker可以利用WORK_MEM来构建hash table>

selectl_shipmode,sum(casewhen o_orderpriority = '1-URGENT'or o_orderpriority = '2-HIGH'then 1else 0end) as high_line_count,sum(casewhen o_orderpriority &lt;&gt; '1-URGENT'and o_orderpriority &lt;&gt; '2-HIGH'then 1else 0end) as low_line_count
fromorders,lineitem
whereo_orderkey = l_orderkeyand l_shipmode in ('MAIL', 'AIR')and l_commitdate &lt; l_receiptdateand l_shipdate &lt; l_commitdateand l_receiptdate &gt;= date '1996-01-01'and l_receiptdate &lt; date '1996-01-01' + interval '1' year
group byl_shipmode
order byl_shipmode
LIMIT 1;QUERY PLAN                                                                     -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Limit  (cost=1964755.66..1964961.44 rows=1 width=27) (actual time=7579.592..7922.997 rows=1 loops=1)-&gt;  Finalize GroupAggregate  (cost=1964755.66..1966196.11 rows=7 width=27) (actual time=7579.590..7579.591 rows=1 loops=1)Group Key: lineitem.l_shipmode-&gt;  Gather Merge  (cost=1964755.66..1966195.83 rows=28 width=27) (actual time=7559.593..7922.319 rows=6 loops=1)Workers Planned: 4Workers Launched: 4-&gt;  Partial GroupAggregate  (cost=1963755.61..1965192.44 rows=7 width=27) (actual time=7548.103..7564.592 rows=2 loops=5)Group Key: lineitem.l_shipmode-&gt;  Sort  (cost=1963755.61..1963935.20 rows=71838 width=27) (actual time=7530.280..7539.688 rows=62519 loops=5)Sort Key: lineitem.l_shipmodeSort Method: external merge  Disk: 2304kBWorker 0:  Sort Method: external merge  Disk: 2064kBWorker 1:  Sort Method: external merge  Disk: 2384kBWorker 2:  Sort Method: external merge  Disk: 2264kBWorker 3:  Sort Method: external merge  Disk: 2336kB-&gt;  Parallel Hash Join  (cost=382571.01..1957960.99 rows=71838 width=27) (actual time=7036.917..7499.692 rows=62519 loops=5)Hash Cond: (lineitem.l_orderkey = orders.o_orderkey)-&gt;  Parallel Seq Scan on lineitem  (cost=0.00..1552386.40 rows=71838 width=19) (actual time=0.583..4901.063 rows=62519 loops=5)Filter: ((l_shipmode = ANY ('{MAIL,AIR}'::bpchar[])) AND (l_commitdate &lt; l_receiptdate) AND (l_shipdate &lt; l_commitdate) AND (l_receiptdate &gt;= '1996-01-01'::date) AND (l_receiptdate &lt; '1997-01-01 00:00:00'::timestamp without time zone))Rows Removed by Filter: 11934691-&gt;  Parallel Hash  (cost=313722.45..313722.45 rows=3750045 width=20) (actual time=2011.518..2011.518 rows=3000000 loops=5)Buckets: 65536  Batches: 256  Memory Usage: 3840kB-&gt;  Parallel Seq Scan on orders  (cost=0.00..313722.45 rows=3750045 width=20) (actual time=0.029..995.948 rows=3000000 loops=5)Planning Time: 0.977 msExecution Time: 7923.770 ms

TPC-H中的SQL12是并行hash join的一个很好的哪里,每个进程都帮助构建共享hash table。

9、Merge Join

由于merge join的特性,使得不能并行。如果merge join是查询执行的最后阶段,那么不用担心,仍可以使用并行。

-- Query 2 from TPC-H
explain (costs off) select s_acctbal, s_name, n_name, p_partkey, p_mfgr, s_address, s_phone, s_comment
from    part, supplier, partsupp, nation, region
wherep_partkey = ps_partkeyand s_suppkey = ps_suppkeyand p_size = 36and p_type like '%BRASS'and s_nationkey = n_nationkeyand n_regionkey = r_regionkeyand r_name = 'AMERICA'and ps_supplycost = (selectmin(ps_supplycost)from    partsupp, supplier, nation, regionwherep_partkey = ps_partkeyand s_suppkey = ps_suppkeyand s_nationkey = n_nationkeyand n_regionkey = r_regionkeyand r_name = 'AMERICA')
order by s_acctbal desc, n_name, s_name, p_partkey
LIMIT 100;QUERY PLAN                                                
----------------------------------------------------------------------------------------------------------Limit-&gt;  SortSort Key: supplier.s_acctbal DESC, nation.n_name, supplier.s_name, part.p_partkey-&gt;  Merge JoinMerge Cond: (part.p_partkey = partsupp.ps_partkey)Join Filter: (partsupp.ps_supplycost = (SubPlan 1))-&gt;  Gather MergeWorkers Planned: 4-&gt;  Parallel Index Scan using <strong>part_pkey</strong> on partFilter: (((p_type)::text ~~ '%BRASS'::text) AND (p_size = 36))-&gt;  Materialize-&gt;  SortSort Key: partsupp.ps_partkey-&gt;  Nested Loop-&gt;  Nested LoopJoin Filter: (nation.n_regionkey = region.r_regionkey)-&gt;  Seq Scan on regionFilter: (r_name = 'AMERICA'::bpchar)-&gt;  Hash JoinHash Cond: (supplier.s_nationkey = nation.n_nationkey)-&gt;  Seq Scan on supplier-&gt;  Hash-&gt;  Seq Scan on nation-&gt;  Index Scan using idx_partsupp_suppkey on partsuppIndex Cond: (ps_suppkey = supplier.s_suppkey)SubPlan 1-&gt;  Aggregate-&gt;  Nested LoopJoin Filter: (nation_1.n_regionkey = region_1.r_regionkey)-&gt;  Seq Scan on region region_1Filter: (r_name = 'AMERICA'::bpchar)-&gt;  Nested Loop-&gt;  Nested Loop-&gt;  Index Scan using idx_partsupp_partkey on partsupp partsupp_1Index Cond: (part.p_partkey = ps_partkey)-&gt;  Index Scan using supplier_pkey on supplier supplier_1Index Cond: (s_suppkey = partsupp_1.ps_suppkey)-&gt;  Index Scan using nation_pkey on nation nation_1Index Cond: (n_nationkey = supplier_1.s_nationkey)

“Merge Join”节点在“Gather Merge”上。因此merge不使用并行。但是“Parallel Index Scan”仍旧有助于part_pkey。

10、Partition-wise join

PgSQL11默认禁止partition-wise join特性。它有一个很高的规划代价。分区表可以一个分区一个分区的进行join。允许使用更小的hash table。每个per-partition join操作可以并行:

tpch=# set enable_partitionwise_join=t;
tpch=# explain (costs off) select * from prt1 t1, prt2 t2
where t1.a = t2.b and t1.b = 0 and t2.b between 0 and 10000;QUERY PLAN                     
---------------------------------------------------Append-&gt;  Hash JoinHash Cond: (t2.b = t1.a)-&gt;  Seq Scan on prt2_p1 t2Filter: ((b &gt;= 0) AND (b &lt;= 10000))-&gt;  Hash-&gt;  Seq Scan on prt1_p1 t1Filter: (b = 0)-&gt;  Hash JoinHash Cond: (t2_1.b = t1_1.a)-&gt;  Seq Scan on prt2_p2 t2_1Filter: ((b &gt;= 0) AND (b &lt;= 10000))-&gt;  Hash-&gt;  Seq Scan on prt1_p2 t1_1Filter: (b = 0)
tpch=# set parallel_setup_cost = 1;
tpch=# set parallel_tuple_cost = 0.01;
tpch=# explain (costs off) select * from prt1 t1, prt2 t2
where t1.a = t2.b and t1.b = 0 and t2.b between 0 and 10000;QUERY PLAN                         
-----------------------------------------------------------GatherWorkers Planned: 4-&gt;  Parallel Append-&gt;  Parallel Hash JoinHash Cond: (t2_1.b = t1_1.a)-&gt;  Parallel Seq Scan on prt2_p2 t2_1Filter: ((b &gt;= 0) AND (b &lt;= 10000))-&gt;  Parallel Hash-&gt;  Parallel Seq Scan on prt1_p2 t1_1Filter: (b = 0)-&gt;  Parallel Hash JoinHash Cond: (t2.b = t1.a)-&gt;  Parallel Seq Scan on prt2_p1 t2Filter: ((b &gt;= 0) AND (b &lt;= 10000))-&gt;  Parallel Hash-&gt;  Parallel Seq Scan on prt1_p1 t1Filter: (b = 0)

分区连接只有在分区足够大的情况下才能使用并行执行

11、Parallel Append

Parallel Append通常在UNION ALL中。缺点:较小的并行度,因为每个worker进程最终都为一个查询服务。即使启用了4个进程,也会仍旧发起2个:

tpch=# explain (costs off) select sum(l_quantity) as sum_qty from lineitem where l_shipdate &lt;= date '1998-12-01' - interval '105' day union all select sum(l_quantity) as sum_qty from lineitem where l_shipdate &lt;= date '2000-12-01' - interval '105' day;QUERY PLAN                                           
------------------------------------------------------------------------------------------------GatherWorkers Planned: 2-&gt;  Parallel Append-&gt;  Aggregate-&gt;  Seq Scan on lineitemFilter: (l_shipdate &lt;= '2000-08-18 00:00:00'::timestamp without time zone)-&gt;  Aggregate-&gt;  Seq Scan on lineitem lineitem_1Filter: (l_shipdate &lt;= '1998-08-18 00:00:00'::timestamp without time zone)

12、更重要的变量

WORKER_MEM:限制每个进程的使用内存。每个查询:work_mem*processes*joins-->会导致内存使用很大

max_parallel_workers_per_gather:执行器使用多少进程并发执行该节点

max_worker_processes:根据服务器上CPU核数调整进程数

max_parallel_workers:和并发进程数一样

13、总结

从9.6并行查询执行开始,可以显著提高扫描许多行或索引记录的复杂查询的性能。不要忘记在高oltp工作负载的服务器上禁止并行执行。顺序扫描或索引扫描仍然耗费大量资源。如果您没有针对整个数据集运行报表,那么只需添加缺失的索引或使用适当的分区就可以提高查询性能。

原文

https://www.percona.com/blog/parallel-queries-in-postgresql/

相关文章:

PgSQL-并行查询系列-介绍[译]

PgSQL-并行查询系列-介绍 现代CPU模型拥有大量的CPU核心。多年来&#xff0c;数据库应用程序都是并发向数据库发送查询的。查询处理多个表的行时&#xff0c;若可以使用多核&#xff0c;则可以客观地提升性能。PgSQL 9.6引入了并行查询的新特性&#xff0c;开启并行查询后可以大…...

Linux以系统服务的方式启动Kafka(其他服务同理)

最终效果&#xff1a; 先回顾命令行的启动方式&#xff1a; kafka的启动 进入kafka的安装目录 1、首先启动zookeeper服务&#xff1a; bin/zookeeper-server-start.sh config/zookeeper.properties2、再启动kafka bin/kafka-server-start.sh config/server.properties &…...

成都瀚网科技有限公司:抖店的评论会消失吗?

抖店是抖音推出的电子商务平台。很多用户在购物后都会对产品进行评价。但有时用户可能会发现抖店评论缺失&#xff0c;让用户产生一些疑惑和困惑。本文将围绕这个问题提供一些答案和解决方案。 1.为什么抖店评论不见了&#xff1f; 首先需要明确的是&#xff0c;抖店评论消失可…...

优先级队列priority_queue以及仿函数的使用

目录 优先级队列priority_queuepriority_queue的模拟实现仿函数 优先级队列priority_queue 优先级队列priority_queue是一种容器适配器&#xff0c;根据严格的弱排序标准&#xff0c;它默认第一个元素总是它所包含的元素中最大的 优先级队列默认使用vector作为底层存储数据的…...

java+ssm+mysql水费管理系统

项目介绍&#xff1a; 使用javassmmysql开发的用户水费管理系统&#xff0c;系统包含超级管理员&#xff0c;系统管理员、用户角色&#xff0c;功能如下&#xff1a; 超级管理员&#xff1a;管理员管理、用户管理、用水管理&#xff08;用水记录、缴费提醒&#xff09;、水费…...

搭建最简单的SpringBoot项目

1、创建maven项目 2、引入父pom <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.7.15</version> </parent> 3、引入springboot-web依赖 <dependency…...

Windows系统手动重新生成性能计数器

症状 使用性能监视器工具时&#xff0c;某些计数器可能缺失或不包含计数器数据。 性能计数器库可能已损坏&#xff0c;需要重新生成。 应用程序日志中可能会出现以下错误&#xff1a; Log Name: Application Source: Microsoft-Windows-IIS-W3SVC-PerfCounters Event ID…...

go elsaticsearch demo

安装 // elasticsearch sdk go get -u github.com/elastic/go-elasticsearch/v7 //操作json go get "github.com/tidwall/gjson" go get "github.com/aquasecurity/esquery"demo package esexampleimport ("bytes""context""en…...

小游戏分发平台如何以技术拓流?

2023年&#xff0c;小游戏的发展将受到多方面的影响&#xff0c;例如新技术的引入、参与小游戏的新玩家以及游戏市场的激烈竞争等。首先&#xff0c;新技术如虚拟现实&#xff08;VR&#xff09;、增强现实&#xff08;AR&#xff09;和机器人技术都可以带来新颖的游戏体验。其…...

力扣|找出和所对应的两数的下标

从零开始刷力扣&#xff08;bushi 题目放在这&#xff1a; 给定一个整数数组 nums 和一个整数目标值 target&#xff0c;请你在该数组中找出和为目标值target的两个整数&#xff0c;并返回它们的数组下标。 你可以假设每种输入只会对应一个答案。但是&#xff0c;数组中同一…...

使用命令行创建仓库

如果你还没有任何代码&#xff0c;可以通过命令行工具创建一个全新的Git仓库并初始化到本项目仓库中。 git clone https://e.coding.net/***/neurosens.git cd neurosens echo "# neurosens" >> README.md git add README.md git commit -m "first commi…...

ESLint 中的“ space-before-function-paren ”相关报错及其解决方案

ESLint 中的“ space-before-function-paren ”相关报错及其解决方案 出现的问题及其报错&#xff1a; 在 VScode 中&#xff0c;在使用带有 ESLint 工具的项目中&#xff0c;保存会发现报错&#xff0c;并且修改好代码格式后&#xff0c;保存会发现代码格式依然出现问题&…...

docker常用中间件安装

文章目录 1、前言2、中间件安装2.1、mysql2.2、gitlab容器2.3、nacos2.4、redis2.5、xxljob2.6、zipkin2.7、sentinel2.8、seata2.8.1、获取镜像2.8.2、运行容器并获取配置 2.9、rockerMQ2.9.1、rockerMQ-namesrv2.9.2、rockerMQ-broker2.9.3、rockerMQ-console 2.10、jenkins2…...

Camunda 7.x 系列【44】修改流程实例

有道无术,术尚可求,有术无道,止于术。 本系列Spring Boot 版本 2.7.9 本系列Camunda 版本 7.19.0 源码地址:https://gitee.com/pearl-organization/camunda-study-demo 文章目录 1. 概述2. 案例演示2.1 回退2.2 子流程2.3 多实例加签1. 概述 流程模型中,执行活动需要按…...

无频闪护眼灯哪个好?什么是无频闪

随着科技的不断发展&#xff0c;工作时使用电子设备越来越普遍,如何保护我们的眼睛不受蓝光、频闪等危害就变得极其重要了。护眼台灯&#xff0c;顾名思义就是保护眼睛的台灯&#xff0c;其工作原理是在光源处使用特殊的防蓝光灯珠&#xff0c;并通过控制电流的稳定性来达到防频…...

css网格布局

css网格布局 常用属性 display: grid; //开启网格grid-template-columns: 2fr 1fr 1fr 1fr 1fr; //设置多少列每列宽度grid-gap: 10px; // 设置表格之间间距grid-template-rows: 50px 50px 50px 50px; // 设置多少行 每行的高度grid-column : 1 //占据位置 占据1格grid-colu…...

Hadoop -HDFS常用操作指令

1.启动HDFS hadoop/sbin/start-dfs.sh2.关闭 HDFS hadoop/sbin/stop-dfs.sh3. 在HDFS中创建文件夹 #老版本 hadoop fs -mkdir -p path #新版本 hadoop dfs -mkdir -p path4.查看指定目录下内容 hadoop fs -ls [-h] [-R] path hadoop dfs -ls [-h] [-R] ptahpath 指定…...

代码随想录二刷day11

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、力扣20. 有效的括号二、力扣1047. 删除字符串中的所有相邻重复项三、力扣150. 逆波兰表达式求值 前言 一、力扣20. 有效的括号 class Solution {public bo…...

系统架构技能之设计模式-工厂模式

一、开篇 本文主要是讲述设计模式中最经典的创建型模式-工厂模式&#xff0c;本文将会从以下几点对工厂模式进行阐述。 本文将会从上面的四个方面进行详细的讲解和说明&#xff0c;当然会的朋友可以之处我的不足之处&#xff0c;不会的朋友也请我们能够相互学习讨论。 二、摘…...

Docker的基本组成和安装

Docker的基本组成 镜像&#xff08;image&#xff09;&#xff1a; docker镜像就好比是一个模板&#xff0c;可以通过这个模板来创建容器服务&#xff0c;tomcat镜像 > run > tomcat01容器&#xff08;提供服务&#xff09; 通过这个镜像可以创建多个容器&#xff08;最…...

【python爬虫】15.Scrapy框架实战(热门职位爬取)

文章目录 前言明确目标分析过程企业排行榜的公司信息公司详情页面的招聘信息 代码实现创建项目定义item 创建和编写爬虫文件存储文件修改设置 代码实操总结 前言 上一关&#xff0c;我们学习了Scrapy框架&#xff0c;知道了Scrapy爬虫公司的结构和工作原理。 在Scrapy爬虫公司…...

Apinto 网关 V0.14 版本发布,6 大插件更新!

大家好&#xff01; 距离上次更新已经过去一段时间了&#xff0c;这段日子里我们一直在酝酿新的功能&#xff0c;本次的迭代将给大家带来 6 大插件的更新~一起来看看有哪些变化吧&#xff01; 新特性 1. 新增 额外参数v2 插件&#xff0c;支持对转发参数进行加密、拼接等操作…...

突破销售瓶颈:亚马逊卖家如何借力TikTok网红营销?

随着社交媒体的崛起&#xff0c;营销方式也在不断变革。TikTok作为一款风靡全球的短视频平台&#xff0c;吸引了数以亿计的用户&#xff0c;成为了品牌宣传和销售的新热点。对于亚马逊卖家而言&#xff0c;通过合理运用TikTok网红营销策略&#xff0c;可以有效提升产品的曝光度…...

JavaWeb之Cookie的简单使用!!!

什么是Cookie Cookie:客户端会话技术&#xff0c;将数据保存到客户端&#xff0c;以后每次请求都携带Cookie数据进行访问 Cookie 数据存放在浏览器端(客户端) 创建Cookie 1.创建Cookie Cookie cookie new Cookie("key","value"); 2.使用response响应…...

16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及Apache Hive示例(6)

Flink 系列文章 1、Flink 部署、概念介绍、source、transformation、sink使用示例、四大基石介绍和示例等系列综合文章链接 13、Flink 的table api与sql的基本概念、通用api介绍及入门示例 14、Flink 的table api与sql之数据类型: 内置数据类型以及它们的属性 15、Flink 的ta…...

6.Redis-hash

hash 哈希类型中的映射关系通常称为field-value&#xff0c;⽤于区分 Redis 整体的键值对&#xff08;key-value&#xff09;&#xff0c;注意这⾥的value是指field对应的值&#xff0c;不是键&#xff08;key&#xff09;对应的值&#xff0c;请注意 value 在不同上下⽂的作⽤…...

点云从入门到精通技术详解100篇-多时相机载激光雷达人工林点云匹配及生长监测(续)

目录 多时相机载激光雷达人工林点云匹配及变化监测 3.1 技术路线 3.2 数据准备 3.3 方法...

【Vue3 知识第七讲】reactive、shallowReactive、toRef、toRefs 等系列方法应用与对比

文章目录 一、reactive()二、readonly()三、shallowReactive()四、shallowReadonly()五、isReactive() 和 isReadonly()六、toRef()七、toRefs()八、toRaw()九、ref、toRef、toRefs 异同点 一、reactive() reactive() 函数用于返回一个对象的响应式代理。与 ref() 函数定义响应…...

Docker 摸门级简易手册

Docker 摸门级简易手册 文章目录 Docker 摸门级简易手册使用 Docker 构建 Java 项目镜像Docker 安装Install on MacInstall on WindowsInstall on Linux Dockerfile 说明FROMLABELENVWORKDIRCOPYADDRUNCMDEXPOSEENTRYPOINTVOLUMEUSER 使用 Docker 构建 Java 项目镜像 假设有个…...

Java类加载机制

简介 在Java的世界里&#xff0c;每一个类或者接口&#xff0c;在经历编译器后&#xff0c;都会生成一个个.class文件。 类加载机制指的是将这些.class文件中的二进制数据读入到内存中&#xff0c;并对数据进行校验&#xff0c;解析和初始化。最终&#xff0c;每一个类都会在…...