当前位置: 首页 > news >正文

「高等数学」雅可比矩阵和黑塞矩阵的异同

「高等数学」雅可比矩阵和黑塞矩阵的异同

雅可比矩阵,Jacobi matrix 或者 Jacobian,是向量值函数 f : R n → R m f:\mathbb{R}^n \to \mathbb{R}^m f:RnRm)的一阶偏导数按行排列所得的矩阵。

黑塞矩阵,又叫海森矩阵,Hesse matrix,是多元函数 f : R n → R f:\mathbb{R}^n \to \mathbb{R} f:RnR)的二阶偏导数组成的方阵。

1、雅可比矩阵 J m × n J_{m\times n} Jm×n

雅可比矩阵通常是一个mxn的矩阵。

给出一个向量值函数: h ( x ) = ( h 1 ( x ) , h 2 ( x ) , ⋯ , h m ( x ) ) T h(\mathbf{x}) = (h_1(\mathbf{x}),h_2(\mathbf{x}),\cdots,h_m(\mathbf{x}))^T h(x)=(h1(x),h2(x),,hm(x))T

它的雅可比矩阵是:

J = [ ∂ h ∂ x 1 ⋯ ∂ h ∂ x n ] = [ ∂ h 1 ∂ x 1 ⋯ ∂ h 1 ∂ x n ⋮ ⋱ ⋮ ∂ h m ∂ x 1 ⋯ ∂ h m ∂ x n ] {\displaystyle \mathbf {J} ={\begin{bmatrix}{\dfrac {\partial \mathbf {h} }{\partial x_{1}}}&\cdots &{\dfrac {\partial \mathbf {h} }{\partial x_{n}}}\end{bmatrix}}={\begin{bmatrix}{\dfrac {\partial h_{1}}{\partial x_{1}}}&\cdots &{\dfrac {\partial h_{1}}{\partial x_{n}}}\\\vdots &\ddots &\vdots \\{\dfrac {\partial h_{m}}{\partial x_{1}}}&\cdots &{\dfrac {\partial h_{m}}{\partial x_{n}}}\end{bmatrix}}} J=[x1hxnh]= x1h1x1hmxnh1xnhm

矩阵的每一行相当于每个向量值函数的分量的梯度的转置,或者叫一阶偏导数按行(row)排列。

一个n元实值函数的梯度的雅可比矩阵:
J = D [ ∇ f ( x ) ] = [ ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 2 ∂ x 1 ⋯ ∂ 2 f ∂ x n ∂ x 1 ∂ 2 f ∂ x 1 ∂ x 2 ∂ 2 f ∂ x 2 2 ⋯ ∂ 2 f ∂ x n ∂ x 2 ⋮ ⋮ ⋱ ⋮ ∂ 2 f ∂ x 1 ∂ x n ∂ 2 f ∂ x 2 ∂ x n ⋯ ∂ 2 f ∂ x n 2 ] {\displaystyle \mathbf {J} = D[\nabla f(\mathbf{x})] = {\begin{bmatrix}{\frac {\partial ^{2}f}{\partial x_{1}^{2}}}&{\frac {\partial ^{2}f}{\partial x_{2}\,\partial x_{1}}}&\cdots &{\frac {\partial ^{2}f}{\partial x_{n}\,\partial x_{1}}}\\ \\{\frac {\partial ^{2}f}{\partial x_{1}\,\partial x_{2}}}&{\frac {\partial ^{2}f}{\partial x_{2}^{2}}}&\cdots &{\frac {\partial ^{2}f}{\partial x_{n}\,\partial x_{2}}}\\ \\\vdots &\vdots &\ddots &\vdots \\\\{\frac {\partial ^{2}f}{\partial x_{1}\,\partial x_{n}}}&{\frac {\partial ^{2}f}{\partial x_{2}\,\partial x_{n}}}&\cdots &{\frac {\partial ^{2}f}{\partial x_{n}^{2}}}\end{bmatrix}}\,} J=D[f(x)]= x122fx1x22fx1xn2fx2x12fx222fx2xn2fxnx12fxnx22fxn22f

2、黑塞矩阵 H n × n H_{n\times n} Hn×n

黑塞矩阵一定是一个方阵。

二阶混合偏导数:
∂ 2 f ∂ y ∂ x = ∂ ∂ y ( ∂ f ∂ x ) = f x y \frac{\partial^2 f}{\partial y \, \partial x} = \frac{\partial}{\partial y} \left( \frac{\partial f}{\partial x} \right) = f_{xy} yx2f=y(xf)=fxy
对于一个n元实值函数 f ( x ) f(\mathbf{x}) f(x),它的梯度为一个列向量: ∇ f ( x ) = ( f x 1 ( x ) , f x 2 ( x ) , ⋯ , f x n ( x ) ) T \nabla f(\mathbf{x}) = (f_{x_1}(\mathbf{x}),f_{x_2}(\mathbf{x}),\cdots,f_{x_n}(\mathbf{x}))^T f(x)=(fx1(x),fx2(x),,fxn(x))T

对其求二阶偏导数,并将偏导数按列(col)排列。
H = [ ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 1 ∂ x 2 ⋯ ∂ 2 f ∂ x 1 ∂ x n ∂ 2 f ∂ x 2 ∂ x 1 ∂ 2 f ∂ x 2 2 ⋯ ∂ 2 f ∂ x 2 ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ 2 f ∂ x n ∂ x 1 ∂ 2 f ∂ x n ∂ x 2 ⋯ ∂ 2 f ∂ x n 2 ] {\displaystyle \mathbf {H} ={\begin{bmatrix}{\frac {\partial ^{2}f}{\partial x_{1}^{2}}}&{\frac {\partial ^{2}f}{\partial x_{1}\,\partial x_{2}}}&\cdots &{\frac {\partial ^{2}f}{\partial x_{1}\,\partial x_{n}}}\\\\{\frac {\partial ^{2}f}{\partial x_{2}\,\partial x_{1}}}&{\frac {\partial ^{2}f}{\partial x_{2}^{2}}}&\cdots &{\frac {\partial ^{2}f}{\partial x_{2}\,\partial x_{n}}}\\\\\vdots &\vdots &\ddots &\vdots \\\\{\frac {\partial ^{2}f}{\partial x_{n}\,\partial x_{1}}}&{\frac {\partial ^{2}f}{\partial x_{n}\,\partial x_{2}}}&\cdots &{\frac {\partial ^{2}f}{\partial x_{n}^{2}}}\end{bmatrix}}\,} H= x122fx2x12fxnx12fx1x22fx222fxnx22fx1xn2fx2xn2fxn22f


因此:

  1. 对于一个二阶可微的n元实值函数,它的黑塞矩阵的转置🟰它的梯度的雅可比矩阵。

  2. 对于一个二阶连续可微的n元实值函数,其二阶混合偏导数: ∂ 2 f ∂ y ∂ x = ∂ 2 f ∂ x ∂ y \frac{\partial^2 f}{\partial y \, \partial x} = \frac{\partial^2 f}{\partial x \, \partial y} yx2f=xy2f。此时,其黑塞矩阵🟰它的梯度的雅可比矩阵。

  3. 在很多地方,遇到的都是二阶连续可微的情况,因此有些地方对雅可比矩阵和黑塞矩阵不加以区分。

相关文章:

「高等数学」雅可比矩阵和黑塞矩阵的异同

「高等数学」雅可比矩阵和黑塞矩阵的异同 雅可比矩阵,Jacobi matrix 或者 Jacobian,是向量值函数( f : R n → R m f:\mathbb{R}^n \to \mathbb{R}^m f:Rn→Rm)的一阶偏导数按行排列所得的矩阵。 黑塞矩阵,又叫海森矩…...

继承(个人学习笔记黑马学习)

1、基本语法 #include <iostream> using namespace std; #include <string>//普通实现页面//Java页面 //class Java { //public: // void header() { // cout << "首页、公开课、登录、注册...(公共头部)" << endl; // } // void footer() …...

ToBeWritten之ATTCK 测评方案

也许每个人出生的时候都以为这世界都是为他一个人而存在的&#xff0c;当他发现自己错的时候&#xff0c;他便开始长大 少走了弯路&#xff0c;也就错过了风景&#xff0c;无论如何&#xff0c;感谢经历 转移发布平台通知&#xff1a;将不再在CSDN博客发布新文章&#xff0c;敬…...

JSONUtil详解

JSONUtil是一个通用的JSON工具类&#xff0c;用于在Java中操作JSON数据。虽然之前提到的示例中没有直接提及JSONUtil&#xff0c;但可以解释一下可能存在的一些常见JSON操作方法&#xff0c;这些方法通常可以在不同的JSON工具类中找到。 JSONUtil中的一些常见方法包括&#xf…...

ArcGIS Maps SDK for JS(一):概述与使用

文章目录 1 概述2 如何使用ArcGIS Maps SDK for JavaScript2.1 AMD 模块与 ES 模块2.2 AMD 模块和 ES 模块比较 3 几种安装方式3.1 通过 ArcGIS CDN 获取 AMD 模块3.2 通过 NPM 运行 ES 模块3.3 通过 CDN 获取 ES 模块3.4 本地构建 ES3.5 本地构建 AMD 3 VSCode下载与安装2.1 下…...

【STM32】FSMC接口的复用和非复用

问题背景 在阅读《零死角玩转STM32—F103指南者》&#xff0c;以及《STM32F10x-中文参考手册》关于FSMC一章节的时候&#xff0c;对于在控制NOR/SRAM的时候使用到的引脚,在提到NOR器件的时候提到了地址复用和非复用接口&#xff0c;一时间没明白是什么东西。 结论 非复用模式…...

操作系统强化认识之Shell编程学习与总结

目录 1.Shell的概述 2.Shell脚本入门 3.变量 3.1.系统预定义变量 3.2.自定义变量 3.3.特殊变量 4.运算符 5.条件判断 6.流程控制 6.1.if判断 6.2.case语句 6.3.for循环 6.4.while循环 7.read读取控制台输入 8.函数 8.1.系统函数 8.2.自定义函数 9.正则表示式入…...

怎么用conda下载清华源的pytorch(自带cuda的版本)

1&#xff0c;添加镜像源 conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...

【ES6】CommonJS模块和ES6模块

在JavaScript中&#xff0c;模块是一种将功能代码组织成逻辑单元的方式&#xff0c;以便在其他项目中重复使用。有两种主要的模块系统&#xff1a;CommonJS和ES6。 1、CommonJS 在CommonJS中&#xff0c;我们使用require来引入模块&#xff0c;使用module.exports来导出模块。…...

两个线程同步执行:解决乱箭穿心(STL/Windows/Linux)

C自学精简教程 目录(必读) C并发编程入门 目录 多线程同步 线程之间同步是指线程等待其他线程执行完某个动作之后再执行&#xff08;本文情况&#xff09;。 线程同步还可以是像十字路口的红绿灯一样&#xff0c;只允许一个方向的车同行&#xff0c;其他方向的车等待。 本…...

Ubuntu18.04更改镜像源(网易,阿里,清华,中科大,浙大)

一&#xff0c;备份原来的源&#xff08;选做&#xff09; sudo cp /etc/apt/sources.list /etc/apt/sources_init.list 二&#xff0c;更换源 sudo gedit /etc/apt/sources.list 删除原来内容改为新的镜像源 1&#xff0c;清华源 deb https://mirrors.tuna.tsinghua.edu…...

字节码和机器码的区别

字节码和机器码是计算机程序在不同阶段的表示形式&#xff0c;它们的主要区别如下&#xff1a; 抽象级别不同&#xff1a;字节码是一种中间表示形式&#xff0c;位于源代码和机器码之间。它是一种与特定平台无关的低级表示形式&#xff0c;通常由编译器将源代码转换而来。而机器…...

go学习part21 Redis和Go(2)

1.三方库安装 309_尚硅谷_Go连接到Redis_哔哩哔哩_bilibili 借鉴&#xff1a; Golang 安装 Redis_go fiber 安装redis_柒柒伍贰玖。的博客-CSDN博客 三方redis库已经迁移到以下网址&#xff0c;go get github.com/gomodule/redigo/redis gomodule/redigo: Go client for Red…...

从0到1学会Git(第二部分):Git的本地操作和管理

写在前面:本文介绍了在本地仓库进行文件的处理以及本地的合并等操作。 前置知识:文件可以处在三个区域&#xff0c;分别为工作区&#xff0c;暂存区和本地仓库&#xff0c;我们此文的目标即是将文件存储在本地仓库中。我们可以将文件的区域理解为&#xff0c;cpu中&#xff0c…...

hive lateral view 实践记录(Array和Map数据类型)

目录 一、Array 1.建表并插入数据 2.lateral view explode 二、Map 1、建表并插入数据 2、lateral view explode() 3、查询数据 一、Array 1.建表并插入数据 正确插入数据&#xff1a; create table tmp.test_lateral_view_movie_230829(movie string,category array&…...

理解 std::thread::join

C多线程并发编程入门&#xff08;目录&#xff09; 本文用最简单易懂的实际案例&#xff0c;讲清楚了 join 的实际内涵&#xff0c;保证你过目不忘。 Hello join 示例 join 函数是我们接触C多线程 thread 遇到的第一个函数。 比如&#xff1a; int main() {thread t(f);t.…...

C#循环定时上传数据,失败重传解决方案,数据库标识

有些时候我们需要定时的上传一些数据库的数据&#xff0c;在数据不完整的情况下可能上传失败&#xff0c;上传失败后我们需要定时在重新上传失败的数据&#xff0c;该怎么合理的制定解决方案呢&#xff1f;下面一起看一下&#xff1a; 当然本篇文章只是提供一个思路&#xff0…...

R语言图形的组合( par(),layout(),par(fig()) )

引入d.class进行画图 > d.class<-read.csv("D://class.csv",header T) > attach(d.class) > opar<-par(no.readonly TRUE)非常简单的数据&#xff0c;需要可自取 链接&#xff1a;https://pan.baidu.com/s/1zNx5z9JsaaRqFueRgGY3mQ 提取码&#x…...

如何为 Flutter 应用程序创建环境变量

我们为什么需要环境变量&#xff1f; 主要用于存储高级机密数据&#xff0c;如果泄露可能会危及您产品的安全性。这些变量本地存储在每个用户的本地系统中&#xff0c;不应该签入存储库。每个用户都有这些变量的副本。 配置 在根项目中创建一个名为 .env 的文件夹&#xff08…...

「C++程序设计 (面向对象进阶)」学习笔记・一

0、引言 本专栏的系列文章是在学习 北京邮电大学 崔毅东 老师的《C程序设计 (面向对象进阶)》课程过程中整理的。欢迎前往专栏了解更多相关内容~ &#x1f600; 有关于现代 C 的基本介绍&#xff0c;请前往《现代C基本介绍》&#xff01; &#x1f514; 先决条件 本专栏的系列…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周&#xff0c;有很多同学在写期末Java web作业时&#xff0c;运行tomcat出现乱码问题&#xff0c;经过多次解决与研究&#xff0c;我做了如下整理&#xff1a; 原因&#xff1a; IDEA本身编码与tomcat的编码与Windows编码不同导致&#xff0c;Windows 系统控制台…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好&#xff0c;总是藏在那些你咬牙坚持的日子里。 硬件&#xff1a;OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写&#xff0c;"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

ip子接口配置及删除

配置永久生效的子接口&#xff0c;2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

springboot整合VUE之在线教育管理系统简介

可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生&#xff0c;小白用户&#xff0c;想学习知识的 有点基础&#xff0c;想要通过项…...