「高等数学」雅可比矩阵和黑塞矩阵的异同
「高等数学」雅可比矩阵和黑塞矩阵的异同
雅可比矩阵,Jacobi matrix 或者 Jacobian,是向量值函数( f : R n → R m f:\mathbb{R}^n \to \mathbb{R}^m f:Rn→Rm)的一阶偏导数按行排列所得的矩阵。
黑塞矩阵,又叫海森矩阵,Hesse matrix,是多元函数( f : R n → R f:\mathbb{R}^n \to \mathbb{R} f:Rn→R)的二阶偏导数组成的方阵。
1、雅可比矩阵 J m × n J_{m\times n} Jm×n
雅可比矩阵通常是一个mxn的矩阵。
给出一个向量值函数: h ( x ) = ( h 1 ( x ) , h 2 ( x ) , ⋯ , h m ( x ) ) T h(\mathbf{x}) = (h_1(\mathbf{x}),h_2(\mathbf{x}),\cdots,h_m(\mathbf{x}))^T h(x)=(h1(x),h2(x),⋯,hm(x))T
它的雅可比矩阵是:
J = [ ∂ h ∂ x 1 ⋯ ∂ h ∂ x n ] = [ ∂ h 1 ∂ x 1 ⋯ ∂ h 1 ∂ x n ⋮ ⋱ ⋮ ∂ h m ∂ x 1 ⋯ ∂ h m ∂ x n ] {\displaystyle \mathbf {J} ={\begin{bmatrix}{\dfrac {\partial \mathbf {h} }{\partial x_{1}}}&\cdots &{\dfrac {\partial \mathbf {h} }{\partial x_{n}}}\end{bmatrix}}={\begin{bmatrix}{\dfrac {\partial h_{1}}{\partial x_{1}}}&\cdots &{\dfrac {\partial h_{1}}{\partial x_{n}}}\\\vdots &\ddots &\vdots \\{\dfrac {\partial h_{m}}{\partial x_{1}}}&\cdots &{\dfrac {\partial h_{m}}{\partial x_{n}}}\end{bmatrix}}} J=[∂x1∂h⋯∂xn∂h]= ∂x1∂h1⋮∂x1∂hm⋯⋱⋯∂xn∂h1⋮∂xn∂hm
矩阵的每一行相当于每个向量值函数的分量的梯度的转置,或者叫一阶偏导数按行(row)排列。
一个n元实值函数的梯度的雅可比矩阵:
J = D [ ∇ f ( x ) ] = [ ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 2 ∂ x 1 ⋯ ∂ 2 f ∂ x n ∂ x 1 ∂ 2 f ∂ x 1 ∂ x 2 ∂ 2 f ∂ x 2 2 ⋯ ∂ 2 f ∂ x n ∂ x 2 ⋮ ⋮ ⋱ ⋮ ∂ 2 f ∂ x 1 ∂ x n ∂ 2 f ∂ x 2 ∂ x n ⋯ ∂ 2 f ∂ x n 2 ] {\displaystyle \mathbf {J} = D[\nabla f(\mathbf{x})] = {\begin{bmatrix}{\frac {\partial ^{2}f}{\partial x_{1}^{2}}}&{\frac {\partial ^{2}f}{\partial x_{2}\,\partial x_{1}}}&\cdots &{\frac {\partial ^{2}f}{\partial x_{n}\,\partial x_{1}}}\\ \\{\frac {\partial ^{2}f}{\partial x_{1}\,\partial x_{2}}}&{\frac {\partial ^{2}f}{\partial x_{2}^{2}}}&\cdots &{\frac {\partial ^{2}f}{\partial x_{n}\,\partial x_{2}}}\\ \\\vdots &\vdots &\ddots &\vdots \\\\{\frac {\partial ^{2}f}{\partial x_{1}\,\partial x_{n}}}&{\frac {\partial ^{2}f}{\partial x_{2}\,\partial x_{n}}}&\cdots &{\frac {\partial ^{2}f}{\partial x_{n}^{2}}}\end{bmatrix}}\,} J=D[∇f(x)]= ∂x12∂2f∂x1∂x2∂2f⋮∂x1∂xn∂2f∂x2∂x1∂2f∂x22∂2f⋮∂x2∂xn∂2f⋯⋯⋱⋯∂xn∂x1∂2f∂xn∂x2∂2f⋮∂xn2∂2f
2、黑塞矩阵 H n × n H_{n\times n} Hn×n
黑塞矩阵一定是一个方阵。
二阶混合偏导数:
∂ 2 f ∂ y ∂ x = ∂ ∂ y ( ∂ f ∂ x ) = f x y \frac{\partial^2 f}{\partial y \, \partial x} = \frac{\partial}{\partial y} \left( \frac{\partial f}{\partial x} \right) = f_{xy} ∂y∂x∂2f=∂y∂(∂x∂f)=fxy
对于一个n元实值函数 f ( x ) f(\mathbf{x}) f(x),它的梯度为一个列向量: ∇ f ( x ) = ( f x 1 ( x ) , f x 2 ( x ) , ⋯ , f x n ( x ) ) T \nabla f(\mathbf{x}) = (f_{x_1}(\mathbf{x}),f_{x_2}(\mathbf{x}),\cdots,f_{x_n}(\mathbf{x}))^T ∇f(x)=(fx1(x),fx2(x),⋯,fxn(x))T
对其求二阶偏导数,并将偏导数按列(col)排列。
H = [ ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 1 ∂ x 2 ⋯ ∂ 2 f ∂ x 1 ∂ x n ∂ 2 f ∂ x 2 ∂ x 1 ∂ 2 f ∂ x 2 2 ⋯ ∂ 2 f ∂ x 2 ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ 2 f ∂ x n ∂ x 1 ∂ 2 f ∂ x n ∂ x 2 ⋯ ∂ 2 f ∂ x n 2 ] {\displaystyle \mathbf {H} ={\begin{bmatrix}{\frac {\partial ^{2}f}{\partial x_{1}^{2}}}&{\frac {\partial ^{2}f}{\partial x_{1}\,\partial x_{2}}}&\cdots &{\frac {\partial ^{2}f}{\partial x_{1}\,\partial x_{n}}}\\\\{\frac {\partial ^{2}f}{\partial x_{2}\,\partial x_{1}}}&{\frac {\partial ^{2}f}{\partial x_{2}^{2}}}&\cdots &{\frac {\partial ^{2}f}{\partial x_{2}\,\partial x_{n}}}\\\\\vdots &\vdots &\ddots &\vdots \\\\{\frac {\partial ^{2}f}{\partial x_{n}\,\partial x_{1}}}&{\frac {\partial ^{2}f}{\partial x_{n}\,\partial x_{2}}}&\cdots &{\frac {\partial ^{2}f}{\partial x_{n}^{2}}}\end{bmatrix}}\,} H= ∂x12∂2f∂x2∂x1∂2f⋮∂xn∂x1∂2f∂x1∂x2∂2f∂x22∂2f⋮∂xn∂x2∂2f⋯⋯⋱⋯∂x1∂xn∂2f∂x2∂xn∂2f⋮∂xn2∂2f
因此:
-
对于一个二阶可微的n元实值函数,它的黑塞矩阵的转置🟰它的梯度的雅可比矩阵。
-
对于一个二阶连续可微的n元实值函数,其二阶混合偏导数: ∂ 2 f ∂ y ∂ x = ∂ 2 f ∂ x ∂ y \frac{\partial^2 f}{\partial y \, \partial x} = \frac{\partial^2 f}{\partial x \, \partial y} ∂y∂x∂2f=∂x∂y∂2f。此时,其黑塞矩阵🟰它的梯度的雅可比矩阵。
-
在很多地方,遇到的都是二阶连续可微的情况,因此有些地方对雅可比矩阵和黑塞矩阵不加以区分。
相关文章:
「高等数学」雅可比矩阵和黑塞矩阵的异同
「高等数学」雅可比矩阵和黑塞矩阵的异同 雅可比矩阵,Jacobi matrix 或者 Jacobian,是向量值函数( f : R n → R m f:\mathbb{R}^n \to \mathbb{R}^m f:Rn→Rm)的一阶偏导数按行排列所得的矩阵。 黑塞矩阵,又叫海森矩…...
继承(个人学习笔记黑马学习)
1、基本语法 #include <iostream> using namespace std; #include <string>//普通实现页面//Java页面 //class Java { //public: // void header() { // cout << "首页、公开课、登录、注册...(公共头部)" << endl; // } // void footer() …...
ToBeWritten之ATTCK 测评方案
也许每个人出生的时候都以为这世界都是为他一个人而存在的,当他发现自己错的时候,他便开始长大 少走了弯路,也就错过了风景,无论如何,感谢经历 转移发布平台通知:将不再在CSDN博客发布新文章,敬…...
JSONUtil详解
JSONUtil是一个通用的JSON工具类,用于在Java中操作JSON数据。虽然之前提到的示例中没有直接提及JSONUtil,但可以解释一下可能存在的一些常见JSON操作方法,这些方法通常可以在不同的JSON工具类中找到。 JSONUtil中的一些常见方法包括…...
ArcGIS Maps SDK for JS(一):概述与使用
文章目录 1 概述2 如何使用ArcGIS Maps SDK for JavaScript2.1 AMD 模块与 ES 模块2.2 AMD 模块和 ES 模块比较 3 几种安装方式3.1 通过 ArcGIS CDN 获取 AMD 模块3.2 通过 NPM 运行 ES 模块3.3 通过 CDN 获取 ES 模块3.4 本地构建 ES3.5 本地构建 AMD 3 VSCode下载与安装2.1 下…...
【STM32】FSMC接口的复用和非复用
问题背景 在阅读《零死角玩转STM32—F103指南者》,以及《STM32F10x-中文参考手册》关于FSMC一章节的时候,对于在控制NOR/SRAM的时候使用到的引脚,在提到NOR器件的时候提到了地址复用和非复用接口,一时间没明白是什么东西。 结论 非复用模式…...
操作系统强化认识之Shell编程学习与总结
目录 1.Shell的概述 2.Shell脚本入门 3.变量 3.1.系统预定义变量 3.2.自定义变量 3.3.特殊变量 4.运算符 5.条件判断 6.流程控制 6.1.if判断 6.2.case语句 6.3.for循环 6.4.while循环 7.read读取控制台输入 8.函数 8.1.系统函数 8.2.自定义函数 9.正则表示式入…...
怎么用conda下载清华源的pytorch(自带cuda的版本)
1,添加镜像源 conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...
【ES6】CommonJS模块和ES6模块
在JavaScript中,模块是一种将功能代码组织成逻辑单元的方式,以便在其他项目中重复使用。有两种主要的模块系统:CommonJS和ES6。 1、CommonJS 在CommonJS中,我们使用require来引入模块,使用module.exports来导出模块。…...
两个线程同步执行:解决乱箭穿心(STL/Windows/Linux)
C自学精简教程 目录(必读) C并发编程入门 目录 多线程同步 线程之间同步是指线程等待其他线程执行完某个动作之后再执行(本文情况)。 线程同步还可以是像十字路口的红绿灯一样,只允许一个方向的车同行,其他方向的车等待。 本…...
Ubuntu18.04更改镜像源(网易,阿里,清华,中科大,浙大)
一,备份原来的源(选做) sudo cp /etc/apt/sources.list /etc/apt/sources_init.list 二,更换源 sudo gedit /etc/apt/sources.list 删除原来内容改为新的镜像源 1,清华源 deb https://mirrors.tuna.tsinghua.edu…...
字节码和机器码的区别
字节码和机器码是计算机程序在不同阶段的表示形式,它们的主要区别如下: 抽象级别不同:字节码是一种中间表示形式,位于源代码和机器码之间。它是一种与特定平台无关的低级表示形式,通常由编译器将源代码转换而来。而机器…...
go学习part21 Redis和Go(2)
1.三方库安装 309_尚硅谷_Go连接到Redis_哔哩哔哩_bilibili 借鉴: Golang 安装 Redis_go fiber 安装redis_柒柒伍贰玖。的博客-CSDN博客 三方redis库已经迁移到以下网址,go get github.com/gomodule/redigo/redis gomodule/redigo: Go client for Red…...
从0到1学会Git(第二部分):Git的本地操作和管理
写在前面:本文介绍了在本地仓库进行文件的处理以及本地的合并等操作。 前置知识:文件可以处在三个区域,分别为工作区,暂存区和本地仓库,我们此文的目标即是将文件存储在本地仓库中。我们可以将文件的区域理解为,cpu中,…...
hive lateral view 实践记录(Array和Map数据类型)
目录 一、Array 1.建表并插入数据 2.lateral view explode 二、Map 1、建表并插入数据 2、lateral view explode() 3、查询数据 一、Array 1.建表并插入数据 正确插入数据: create table tmp.test_lateral_view_movie_230829(movie string,category array&…...
理解 std::thread::join
C多线程并发编程入门(目录) 本文用最简单易懂的实际案例,讲清楚了 join 的实际内涵,保证你过目不忘。 Hello join 示例 join 函数是我们接触C多线程 thread 遇到的第一个函数。 比如: int main() {thread t(f);t.…...
C#循环定时上传数据,失败重传解决方案,数据库标识
有些时候我们需要定时的上传一些数据库的数据,在数据不完整的情况下可能上传失败,上传失败后我们需要定时在重新上传失败的数据,该怎么合理的制定解决方案呢?下面一起看一下: 当然本篇文章只是提供一个思路࿰…...
R语言图形的组合( par(),layout(),par(fig()) )
引入d.class进行画图 > d.class<-read.csv("D://class.csv",header T) > attach(d.class) > opar<-par(no.readonly TRUE)非常简单的数据,需要可自取 链接:https://pan.baidu.com/s/1zNx5z9JsaaRqFueRgGY3mQ 提取码&#x…...
如何为 Flutter 应用程序创建环境变量
我们为什么需要环境变量? 主要用于存储高级机密数据,如果泄露可能会危及您产品的安全性。这些变量本地存储在每个用户的本地系统中,不应该签入存储库。每个用户都有这些变量的副本。 配置 在根项目中创建一个名为 .env 的文件夹(…...
「C++程序设计 (面向对象进阶)」学习笔记・一
0、引言 本专栏的系列文章是在学习 北京邮电大学 崔毅东 老师的《C程序设计 (面向对象进阶)》课程过程中整理的。欢迎前往专栏了解更多相关内容~ 😀 有关于现代 C 的基本介绍,请前往《现代C基本介绍》! 🔔 先决条件 本专栏的系列…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
dedecms 织梦自定义表单留言增加ajax验证码功能
增加ajax功能模块,用户不点击提交按钮,只要输入框失去焦点,就会提前提示验证码是否正确。 一,模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...
最新SpringBoot+SpringCloud+Nacos微服务框架分享
文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...
HTML前端开发:JavaScript 常用事件详解
作为前端开发的核心,JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例: 1. onclick - 点击事件 当元素被单击时触发(左键点击) button.onclick function() {alert("按钮被点击了!&…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...
数据结构:递归的种类(Types of Recursion)
目录 尾递归(Tail Recursion) 什么是 Loop(循环)? 复杂度分析 头递归(Head Recursion) 树形递归(Tree Recursion) 线性递归(Linear Recursion)…...
前端调试HTTP状态码
1xx(信息类状态码) 这类状态码表示临时响应,需要客户端继续处理请求。 100 Continue 服务器已收到请求的初始部分,客户端应继续发送剩余部分。 2xx(成功类状态码) 表示请求已成功被服务器接收、理解并处…...
命令行关闭Windows防火墙
命令行关闭Windows防火墙 引言一、防火墙:被低估的"智能安检员"二、优先尝试!90%问题无需关闭防火墙方案1:程序白名单(解决软件误拦截)方案2:开放特定端口(解决网游/开发端口不通)三、命令行极速关闭方案方法一:PowerShell(推荐Win10/11)方法二:CMD命令…...
