opencv识别一张图片的多个红框,并截取红框的内容
需求
需要获取图片的红框的内容,实体的图片我就不放了
获取红框
先截取获得图片的多个轮廓
import cv2
import numpy as np # 加载图像并转换为灰度图像
image = cv2.imread('image6.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 应用高斯模糊以减少噪声
blur = cv2.GaussianBlur(gray, (5, 5), 0) # 应用HSV颜色空间转换
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
lower_red = np.array([0, 50, 50])
upper_red = np.array([10, 255, 255])
mask = cv2.inRange(hsv, lower_red, upper_red) # 应用膨胀操作来放大边框内的内容和边框
kernel = np.ones((5,5),np.uint8)
dilated = cv2.dilate(mask,kernel,iterations = 1) # 获取边界框坐标
contours, hierarchy = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # 遍历每个轮廓并找到最大的红色边框
max_contour = None
max_area = 0
for contour in contours: area = cv2.contourArea(contour) # if area > max_area: # max_contour = contour # max_area = area x, y, w, h = cv2.boundingRect(contour) # 裁剪图像以显示边界框内的内容及其周围10px内容 crop_image = image[max(y-10, 0):min(y+h+10, image.shape[0]), max(x-10, 0):min(x+w+10, image.shape[1])] # 在裁剪后的图像上绘制红色矩形框以突出显示边界框内的内容及其周围10px内容 cv2.rectangle(crop_image, (max(x-10, 0), max(y-10, 0)), (min(x+w+10, image.shape[1]), min(y+h+10, image.shape[0])), (0, 0, 255), 2) # 在裁剪后的图像上绘制红色矩形框以突出显示边界框内的内容及其周围10px内容 #cv2.imshow('Content with Border and Surrounding Area', crop_image) # 显示带有红色边框和周围10px内容的裁剪后的图像 cv2.imwrite(f'red_border_{x}_{y}_{w}_{h}.jpg', crop_image) cv2.waitKey(0) cv2.destroyAllWindows()# 获取最大轮廓的边界框坐标
# x, y, w, h = cv2.boundingRect(max_contour) # # 裁剪图像以显示边界框内的内容及其周围10px内容
# crop_image = image[max(y-10, 0):min(y+h+10, image.shape[0]), max(x-10, 0):min(x+w+10, image.shape[1])] # # 在裁剪后的图像上绘制红色矩形框以突出显示边界框内的内容及其周围10px内容
# cv2.rectangle(crop_image, (max(x-10, 0), max(y-10, 0)), (min(x+w+10, image.shape[1]), min(y+h+10, image.shape[0])), (0, 0, 255), 2) # 在裁剪后的图像上绘制红色矩形框以突出显示边界框内的内容及其周围10px内容
# cv2.imshow('Content with Border and Surrounding Area', crop_image) # 显示带有红色边框和周围10px内容的裁剪后的图像 # cv2.waitKey(0)
# cv2.destroyAllWindows()
识别红框
import cv2
import numpy as np# 加载图像
image = cv2.imread('red_border_1038_1886_6_6.jpg')# 将图像转换为灰度
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 二值化图像
_, threshold = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)# 找到图像中的轮廓
contours, _ = cv2.findContours(threshold, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)# 遍历每个轮廓,判断是否是闭合的圆
for contour in contours:# 进行轮廓近似,获取近似的多边形轮廓epsilon = 0.01 * cv2.arcLength(contour, True)approx = cv2.approxPolyDP(contour, epsilon, True)# 计算近似轮廓的周长approx_length = cv2.arcLength(approx, True)# 计算原始轮廓的周长contour_length = cv2.arcLength(contour, True)# 判断近似轮廓的周长是否接近于原始轮廓的周长if approx_length >= 0.9 * contour_length:# 绘制闭合的圆cv2.drawContours(image, [approx], -1, (0, 255, 0), 2)cv2.putText(image, 'Closed Circle', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)print("存在")# 显示结果图像
cv2.imshow('Result', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
相关文章:

opencv识别一张图片的多个红框,并截取红框的内容
需求 需要获取图片的红框的内容,实体的图片我就不放了 获取红框 先截取获得图片的多个轮廓 import cv2 import numpy as np # 加载图像并转换为灰度图像 image cv2.imread(image6.jpg) gray cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 应用高斯模糊以减…...
数据库-事务
介绍: 事务是一组操作的集合,它是一个不可分割的工作单位,事物会把所有的操作作为一个整体一起向系统 提交或撤销操作请求,即这些操作要么同时成功,要么同时失败 操作:事务控制 开启事务:start…...
MySQL 使用开源审计插件
文章目录 前言1. 审计插件下载2. 审计插件参数2.1 server_audit_events2.2 server_audit_excl_users2.3 server_audit_output_type2.4 server_audit_file_path2.5 server_audit_file_rotate_now2.6 server_audit_file_rotate_size2.7 server_audit_file_rotations2.8 server_au…...
Python入门教程 | Python3 集合(Set)
Python3 集合(Set) 集合(set)是一个无序的不重复元素序列。 集合中的元素不会重复,并且可以进行交集、并集、差集等常见的集合操作。 可以使用大括号 { } 创建集合,元素之间用逗号 , 分隔, 或…...

视频汇聚/视频云存储/视频监控管理平台EasyCVR安全检查的相关问题及解决方法2.0
开源EasyDarwin视频监控TSINGSEE青犀视频平台EasyCVR能在复杂的网络环境中,将分散的各类视频资源进行统一汇聚、整合、集中管理,在视频监控播放上,TSINGSEE青犀视频安防监控汇聚平台可支持1、4、9、16个画面窗口播放,可同时播放多…...

【C++模拟实现】反向迭代器的实现
【C模拟实现】反向迭代器的实现 目录 【C模拟实现】反向迭代器的实现反向迭代器的代码示例反向迭代器的模拟实现要点引入iterator模版参数rbegin()和rend()的实现 作者:爱写代码的刚子 时间:2023.9.5 前言:本篇博客主要介绍反向迭代器的实现&…...

Kubernetes技术--k8s核心技术持久化存储
有时候需要在集群中进行一些重要的数据进行持久化存储,然后需要的时候再进行挂载,那么下面我们一起来看看如何实现数据的持久化存储操作。 1.nfs网络存储 -1.找一台服务器做nfs的服务端,安装nfs。(这里我们直接在master上实现)。 这里应该找再单独的搭建一个node节点做持…...

【80天学习完《深入理解计算机系统》】第十四天 复习第三章
专注 效率 记忆 预习 笔记 复习 做题 欢迎观看我的博客,如有问题交流,欢迎评论区留言,一定尽快回复!(大家可以去看我的专栏,是所有文章的目录) 文章字体风格: 红色文字表示&#…...

库中是如何实现string类的?
🎈个人主页:🎈 :✨✨✨初阶牛✨✨✨ 🐻推荐专栏1: 🍔🍟🌯C语言初阶 🐻推荐专栏2: 🍔🍟🌯C语言进阶 🔑个人信条: 🌵知行合一 …...

无涯教程-JavaScript - WORKDAY.INTL函数
描述 WORKDAY.INTL函数返回带有自定义周末参数的指定工作日数之前或之后的日期的序列号。周末参数指示哪些和多少天是周末。周末和指定为假期的任何日子均不视为工作日。 语法 WORKDAY.INTL (start_date, days, [weekend], [holidays])争论 Argument描述Required/OptionalS…...

STM32--蓝牙
本文主要介绍基于STM32F103C8T6和蓝牙模块实现的交互控制 简介 蓝牙(Bluetooth)是一种用于无线通信的技术标准,允许设备在短距离内进行数据交换和通信。它是由爱立信(Ericsson)公司在1994年推出的,以取代…...
java 实现原型模式
原型模式(Prototype Pattern)是一种创建型设计模式,它允许创建对象的副本,而无需暴露对象的创建细节。在Java中,原型模式通常通过克隆对象来实现。要实现原型模式,需要满足以下条件: 被克隆的对…...

maven本地安装jar包install-file,解决没有pom的问题
背景: 公司因为权限问题,没有所有的代码,内部maven还在搭建,所以需要拿到同事的jar包,本地install: mvn install:install-file -DgroupIdcom..framework -DartifactIdcloud-api -Dversion1.0.0-SNAPSHOT …...

【C++学习笔记】5、变量作用域
文章目录 【 1、局部变量 】【 2、全局变量 】【 3、局部变量和全局变量的初始化 】 作用域是程序的一个区域,一般来说有三个地方可以定义变量: 在函数或一个代码块内部声明的变量,称为局部变量。 在函数参数的定义中声明的变量,称…...

Python中的装饰器
迷途小书童的 Note 读完需要 5分钟 速读仅需 2 分钟 装饰器是一个非常有用而又常被误解的功能,可以让我们在不修改函数或类的源代码情况下给它们提供扩展功能。本文将通过具体示例带你深入理解 Python 装饰器的用法。 1 装饰器基础 装饰器本质上是一个函数ÿ…...

什么是RESTful API,Spring MVC如何支持RESTful架构
文章目录 🎈个人主页:程序员 小侯 🎐CSDN新晋作者 🎉欢迎 👍点赞✍评论⭐收藏 ✨收录专栏:Java框架 ✨文章内容:Spring MVC支持RESTful架构 🤝希望作者的文章能对你有所帮助…...

cin、cin.getline()、getline()的用法【C++】
一、cin>> 用法1:输入一个数字或字符 #include <iostream> using namespace std; int main () {int a,b;cin>>a>>b;cout<<ab<<endl;return 0; } 用法2:接收一个字符串,遇“空格”、“TAB”、“回车”…...

单向链表(c/c++)
链表是一种常见的数据结构,其中运用到了结构体指针,链表可以实现动态存储分配,换而言之,链表是一个功能强大的数组,可以在某个节点定义多种数据类型,可以实现任意的添加,删除,插入节…...

像linux 一样清理Windows C盘
像 linux 有命令 du -sh 查看文件夹大小 但是windows 可就没有这个命令了,就算有命令,也不能扫描子目录里面的文件 但是windows 可以借助 软件来清理,和linux 一样 文件上面是目录,下面是文件所占用空间大小的图,咋…...
在Linux 下制作启动盘以及dd命令使用
在Linux 下制作启动盘以及dd命令使用 1、在Linux 下制作启动盘,可使用如下命令:2、Linux dd 命令(1)参数说明: 3、dd应用实例(1)将本地的/dev/hdb整盘备份到/dev/hdd(2)将/dev/hdb全盘数据备份到指定路径的image文件(3)将备份文件恢复到指定盘(4)备份/de…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...

论文笔记——相干体技术在裂缝预测中的应用研究
目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...
安卓基础(Java 和 Gradle 版本)
1. 设置项目的 JDK 版本 方法1:通过 Project Structure File → Project Structure... (或按 CtrlAltShiftS) 左侧选择 SDK Location 在 Gradle Settings 部分,设置 Gradle JDK 方法2:通过 Settings File → Settings... (或 CtrlAltS)…...
云原生周刊:k0s 成为 CNCF 沙箱项目
开源项目推荐 HAMi HAMi(原名 k8s‑vGPU‑scheduler)是一款 CNCF Sandbox 级别的开源 K8s 中间件,通过虚拟化 GPU/NPU 等异构设备并支持内存、计算核心时间片隔离及共享调度,为容器提供统一接口,实现细粒度资源配额…...
es6+和css3新增的特性有哪些
一:ECMAScript 新特性(ES6) ES6 (2015) - 革命性更新 1,记住的方法,从一个方法里面用到了哪些技术 1,let /const块级作用域声明2,**默认参数**:函数参数可以设置默认值。3&#x…...

C++--string的模拟实现
一,引言 string的模拟实现是只对string对象中给的主要功能经行模拟实现,其目的是加强对string的底层了解,以便于在以后的学习或者工作中更加熟练的使用string。本文中的代码仅供参考并不唯一。 二,默认成员函数 string主要有三个成员变量,…...
文件上传漏洞防御全攻略
要全面防范文件上传漏洞,需构建多层防御体系,结合技术验证、存储隔离与权限控制: 🔒 一、基础防护层 前端校验(仅辅助) 通过JavaScript限制文件后缀名(白名单)和大小,提…...

【1】跨越技术栈鸿沟:字节跳动开源TRAE AI编程IDE的实战体验
2024年初,人工智能编程工具领域发生了一次静默的变革。当字节跳动宣布退出其TRAE项目(一款融合大型语言模型能力的云端AI编程IDE)时,技术社区曾短暂叹息。然而这一退场并非终点——通过开源社区的接力,TRAE在WayToAGI等…...