当前位置: 首页 > news >正文

OpenCV(五):图像颜色空间转换

目录

1.图像颜色空间介绍

RGB 颜色空间

2.HSV 颜色空间

3.RGBA 颜色空间

2.图像数据类型间的互相转换convertTo()

3.不同颜色空间互相转换cvtColor()

 4.Android JNI demo


1.图像颜色空间介绍

  1. RGB 颜色空间

RGB 颜色空间是最常见的颜色表示方式之一,其中 R、G、B 分别表示红色、绿色和蓝色分量。在 OpenCV 中,RGB 图像可以通过 CvType.CV_8UC3 的类型来表示,其中 8U 表示 8 位无符号整数,C3 表示三个通道。

2.HSV 颜色空间

 HSV (Hue, Saturation, Value) 颜色空间是一种将颜色表示为色调、饱和度和亮度三个分量的方式。色调表示颜色的基本色相,取值范围为 0 到 360;饱和度表示颜色的纯度,取值范围为 0 到 1;亮度表示颜色的亮度,取值范围也为 0 到 1。在 OpenCV 中,HSV 图像可以通过 CvType.CV_8UC3 的类型来表示。

3.RGBA 颜色空间

在 RGBA 颜色空间中,每个分量的取值范围为 0 到 255,其中 R、G、B 分别表示红色、绿色和蓝色分量,取值范围为 0-255,而 A 表示透明度分量,取值范围为 0-255,其中 0 表示完全透明,255 表示完全不透明。

2.图像数据类型间的互相转换convertTo()

void cv::Mat::convertTo ( OutputArray m,

int         rtype,

double   alpha,

double   beta ,

)      

  • m:输出图像
  • rtype: 转换后数据类型
  • alpha:缩放系数
  • beta:平移系数

3.不同颜色空间互相转换cvtColor()

void cv::cvtColor ( InputArray  src,

                              OutputArray  dst,

                               int   code,

                               int    dstCn 

  • src:待转换颜色模型的原始图像。
  • dst:转换颜色模型后的目标图像。
  • code: 颜色空间转换的标志,如由RGB空间到HSV空间。
  • dstCn:目标图像中的通道数,如果参数为0,则从src和代码中自动导出通道数。

 4.Android JNI demo


#include <jni.h>#include <string>#include <android/bitmap.h>#include <opencv2/opencv.hpp>#include <iostream>#include <android/log.h>using namespace cv;using namespace std;extern "C"JNIEXPORT void JNICALLJava_com_example_myapplication_MainActivity_opencv_1test(JNIEnv *env, jclass clazz,jobject bitmap) {AndroidBitmapInfo info;void *pixels;CV_Assert(AndroidBitmap_getInfo(env, bitmap, &info) >= 0);//判断图片是位图格式有RGB_565 、RGBA_8888CV_Assert(info.format == ANDROID_BITMAP_FORMAT_RGBA_8888 ||info.format == ANDROID_BITMAP_FORMAT_RGB_565);CV_Assert(AndroidBitmap_lockPixels(env, bitmap, &pixels) >= 0);CV_Assert(pixels);//将bitmap转化为Mat类Mat image(info.height, info.width, CV_8UC4, pixels);Mat image32;image.convertTo(image32,CV_32F,1/255,0);Mat HSV;cvtColor(image,HSV,COLOR_BGR2HSV);Mat gray;cvtColor(image,gray,COLOR_BGR2GRAY);imwrite("/sdcard/DCIM/gray.jpg",gray);//保存图像到手机相册imwrite("/sdcard/DCIM/HSV.jpg",HSV);}

                   

     (原图)                                    (HSV)                                      (gray)

相关文章:

OpenCV(五):图像颜色空间转换

目录 1.图像颜色空间介绍 RGB 颜色空间 2.HSV 颜色空间 3.RGBA 颜色空间 2.图像数据类型间的互相转换convertTo() 3.不同颜色空间互相转换cvtColor() 4.Android JNI demo 1.图像颜色空间介绍 RGB 颜色空间 RGB 颜色空间是最常见的颜色表示方式之一&#xff0c;其中 R、…...

一图胜千言!数据可视化多维讲解(Python)

数据聚合、汇总和可视化是支撑数据分析领域的三大支柱。长久以来&#xff0c;数据可视化都是一个强有力的工具&#xff0c;被业界广泛使用&#xff0c;却受限于 2 维。在本文中&#xff0c;作者将探索一些有效的多维数据可视化策略&#xff08;范围从 1 维到 6 维&#xff09;。…...

Hbase相关总结

Hbase 1、Hbase的数据写入流程 由客户端发起写入数据的请求, 首先会先连接zookeeper 从zookeeper中获取到当前HMaster的信息,并与HMaster建立连接从HMaster中获取RegionServer列表信息 连接meta表对应的RegionServer地址, 从meta表获取当前要写入的表对应region被那个RegionS…...

C++ Primer Plus第二章编程练习答案

答案仅供参考&#xff0c;实际运行效果取决于运行平台和运行软件 1.编写一个C程序&#xff0c;它显示您的姓名和地址。 #include <iostream> using namespace std;int main() {cout << "My name is sakuraaa0908 C Primer Plus." << endl;cout &…...

Web后端开发(请求响应)上

请求响应的概述 浏览器&#xff08;请求&#xff09;<--------------------------(HTTP协议)---------------------->&#xff08;响应&#xff09;Web服务器 请求&#xff1a;获取请求数据 响应&#xff1a;设置响应数据 BS架构&#xff1a;浏览器/服务器架构模式。…...

LeetCode 338. Counting Bits【动态规划,位运算】简单

本文属于「征服LeetCode」系列文章之一&#xff0c;这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁&#xff0c;本系列将至少持续到刷完所有无锁题之日为止&#xff1b;由于LeetCode还在不断地创建新题&#xff0c;本系列的终止日期可能是永远。在这一系列刷题文章…...

解释 Git 的基本概念和使用方式。

Git 是一种分布式版本控制系统&#xff0c;它可以跟踪文件的修改历史、协调多个人员的工作、将分支合并到一起等。下面是 Git 的一些基本概念和使用方式。 - 仓库&#xff08;Repository&#xff09;&#xff1a;存储代码、版本控制历史记录等的地方。 - 分支&#xff08;Bran…...

计算机网络初识

目录 1、计算机网络背景 网络发展 认识 "协议" 2、网络协议初识 OSI七层模型 TCP/IP五层(或四层)模型 3、网络传输基本流程 网络传输流程图 数据包封装和分用 4、网络中的地址管理 认识IP地址 认识MAC地址 1、计算机网络背景 网络发展 在之前呢&…...

python 笔记(2)——文件、异常、面向对象、装饰器、json

目录 1、文件操作 1-1&#xff09;打开文件的两种方式&#xff1a; 1-2&#xff09;文件操作的简单示例&#xff1a; write方法: read方法&#xff1a; readline方法&#xff1a; readlines方法&#xff1a; 2、异常处理 2-1&#xff09;不会中断程序的异常捕获和处理…...

Meta AI的Nougat能够将数学表达式从PDF文件转换为机器可读文本

大多数科学知识通常以可移植文档格式&#xff08;PDF&#xff09;的形式存储&#xff0c;这也是互联网上第二突出的数据格式。然而&#xff0c;从这种格式中提取信息或将其转换为机器可读的文本具有挑战性&#xff0c;尤其是在涉及数学表达式时。 为了解决这个问题&#xff0c…...

【Python爬虫笔记】爬虫代理IP与访问控制

一、前言 在进行网络爬虫的开发过程中&#xff0c;有许多限制因素阻碍着爬虫程序的正常运行&#xff0c;其中最主要的一点就是反爬虫机制。为了防止爬虫程序在短时间内大量地请求同一个网站&#xff0c;网站管理者会使用一些方式进行限制。这时候&#xff0c;代理IP就是解决方…...

50、Spring WebFlux 的 自动配置 的一些介绍,与 Spring MVC 的一些对比

Spring WebFlux Spring WebFlux 简称 WebFlux &#xff0c;是 spring5.0 新引入的一个框架。 SpringBoot 同样为 WebFlux 提供了自动配置。 Spring WebFlux 和 Spring MVC 是属于竞争关系&#xff0c;都是框架。在一个项目中两个也可以同时存在。 SpringMVC 是基于 Servlet A…...

【算法专题突破】双指针 - 和为s的两个数字(6)

目录 1. 题目解析 2. 算法原理 3. 代码编写 写在最后&#xff1a; 1. 题目解析 题目链接&#xff1a;剑指 Offer 57. 和为s的两个数字 - 力扣&#xff08;Leetcode&#xff09; 这道题题目就一句话但是也是有信息可以提取的&#xff0c; 最重要的就是开始的那句话&#…...

Redis7入门概述

✅作者简介&#xff1a;大家好&#xff0c;我是Leo&#xff0c;热爱Java后端开发者&#xff0c;一个想要与大家共同进步的男人&#x1f609;&#x1f609; &#x1f34e;个人主页&#xff1a;Leo的博客 &#x1f49e;当前专栏&#xff1a; Java从入门到精通 ✨特色专栏&#xf…...

SQL sever命名规范

目录 一、标识符 二、表名&#xff08;Table&#xff09;: 三、字段名&#xff08;fields&#xff09;&#xff1a; 四、约束&#xff08;Constraint&#xff09;&#xff1a; 五、索引&#xff08;Index&#xff09;&#xff1a; 六、存储过程&#xff08;Stored Proced…...

BCSP-玄子Share-Java框基础_工厂模式/代理模式

三、设计模式 3.1 设计模式简介 软件设计中的三十六计是人们在长期的软件开发中的经验总结是对某些特定问题的经过实践检验的特定解决方法被广泛运用在 Java 框架技术中 3.1.1 设计模式的优点 设计模式是可复用的面向对象软件的基础可以更加简单方便地复用成功的设计和体系…...

【数据结构】2015统考真题 6

题目描述 【2015统考真题】求下面的带权图的最小&#xff08;代价&#xff09;生成树时&#xff0c;可能是Kruskal算法第2次选中但不是Prim算法&#xff08;从v4开始&#xff09;第2次选中的边是&#xff08;C&#xff09; A. (V1, V3) B. (V1, V4) C. (V2, V3) D. (V3, V4) …...

HTML <track> 标签

实例 播放带有字幕的视频: <video width="320" height="240" controls="controls"><source src="forrest_gump.mp4" type="video/mp4" /><source src="forrest_gump.ogg" type="video/ogg…...

php中识别url被篡改并阻止访问的实现方式是什么

在 PHP 中&#xff0c;可以通过多种方式来识别并阻止 URL 被篡改的访问。以下是一些常见的方法&#xff1a; 基本身份验证&#xff1a;使用 PHP 的 $_SERVER[PHP_AUTH_USER] 和 $_SERVER[PHP_AUTH_PW] 变量可以实施基本的 HTTP 身份验证。在访问受保护的页面之前&#xff0c;可…...

c++ 学习 之 const,constexpr,volatile

前言 const、constexpr 和 volatile 是 C 中用于修饰变量和类型的关键字 正文 它们分别用于不同的用途&#xff1a; const&#xff08;常量&#xff09;&#xff1a; const 用于声明常量&#xff0c;表示变量的值不能被修改。 它可以应用于变量、指针、引用、成员函数以及类…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

python如何将word的doc另存为docx

将 DOCX 文件另存为 DOCX 格式&#xff08;Python 实现&#xff09; 在 Python 中&#xff0c;你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是&#xff0c;.doc 是旧的 Word 格式&#xff0c;而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;使用DevEco Studio作为开发工具&#xff0c;采用Java语言实现&#xff0c;包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...