当前位置: 首页 > news >正文

【LeetCode】剑指 Offer 10- I. 斐波那契数列 p74 -- Java Version

题目链接

1. 题目介绍()

写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项(即 F(N))。斐波那契数列的定义如下:

  • F(0) = 0, F(1) = 1
  • F(N) = F(N - 1) + F(N - 2), 其中 N > 1.

斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

【测试用例】:
示例 1:

输入:n = 2
输出:1

示例 2:

输入:n = 5
输出:5

【条件约束】:

提示:

  • 0 <= n <= 100

2. 题解

2.1 递归实现 — O(2n)

时间复杂度O(2n),空间复杂度O(1)

class Solution {// 第一种方法:递归实现public int fib(int n) {// 1. n为0时,返回0if (n == 0) return 0;// 2. n为1时,返回1else if (n == 1) return 1;// 3. 从第三个数开始,之后的每个数都为前两项数的和else return fib(n-1) + fib(n-2);}
}

在这里插入图片描述
改进: 使用数组保存每一次的运算结果;改进之后时间复杂度: 从2的n次方降为了O(n²),空间复杂度:O(n)。

class Solution {int[] ints;public int fib(int n) {ints = new int[n];if(n <= 1) return n;return (f(n - 1) + f(n - 2)) % 1000000007;}private int f(int n) {if(n == 0 || n == 1) return n;if (ints[n] != 0){return ints[n];}ints[n] = (f(n - 1) + f(n - 2)) % 1000000007;return (f(n - 1) + f(n - 2)) % 1000000007;}
}

在这里插入图片描述

2.2 滚动数组循环实现

时间复杂度O(n),空间复杂度O(1)
在这里插入图片描述
数组不断滚动向后,逐次累加

class Solution {// 第二种方法:循环实现public int fib(int n) {final int MOD = 1000000007;// 1. 定义辅助数组res,用以记录当前值的前两项值long[] res = {0,1};// 2. 如果n小于2,直接返回if (n < 2){return (int)res[n];} // 3. 定义sum,用于记录从第三项开始,所得到的前两项加和long sum  = 0;for (int i = 2; i <= n; i++){    // 4. sum为前两项加和,然后依次交换元素,逐次相加sum = (res[0] + res[1]) % MOD;res[0] = res[1];res[1] = sum;}return (int)sum;}
}

在这里插入图片描述

2.3 矩阵快速幂 – O(logn)

时间复杂度O(logn),空间复杂度O(1)
在这里插入图片描述
这就涉及到了斐波那契数列的数学公式。

快速幂算法原理: 如需求数据 a 的幂次,此处 a 可以为数也可以为矩阵,常规做法需要对a进行不断的乘积即 a * a * a * …

以求 3^10 的结果为例:
[优化步骤1:]
易知:
3^10=3*3*3*3*3*3*3*3*3*3
=9^5 = 9^4*9
=81^2*9
=6561*9

基于以上原理,我们在计算一个数的多次幂时,可以先判断其幂次的奇偶性,然后:

  • 如果幂次为偶直接 base(底数) 作平方,power(幂次) 除以2

  • 如果幂次为奇则底数平方,幂次整除于2然后再多乘一次底数

[优化步骤2:]

对于以上涉及到 [判断奇偶性] 和 [除以2] 这样的操作。使用系统的位运算比普通运算的效率是高的,因此可以进一步优化:

  • 把 power % 2 == 1 变为 (power & 1) == 1

  • 把 power = power / 2 变为 power = power >> 1

class Solution {static final int MOD = 1000000007;public int fib(int n) {//矩阵快速幂if (n < 2) {return n;}//定义乘积底数int[][] base = {{1, 1}, {1, 0}};//定义幂次int power = n - 1;int[][] ans = calc(base, power);//按照公式,返回的是两行一列矩阵的第一个数return ans[0][0];}//定义函数,求底数为 base 幂次为 power 的结果public int[][] calc(int[][] base, int power) {//定义变量,存储计算结果,此次定义为单位阵int[][] res = {{1, 0}, {0, 1}};//可以一直对幂次进行整除while (power > 0) {//1.若为奇数,需多乘一次 base//2.若power除到1,乘积后得到res//此处使用位运算在于效率高if ((power & 1) == 1) {res = mul(res, base);}//不管幂次是奇还是偶,整除的结果是一样的如 5/2 和 4/2//此处使用位运算在于效率高power = power >> 1;base = mul(base, base);}return res;}//定义函数,求二维矩阵:两矩阵 a, b 的乘积public int[][] mul(int[][] a, int[][] b) {int[][] c = new int[2][2];for (int i = 0; i < 2; i++) {for (int j = 0; j < 2; j++) {//矩阵乘积对应关系,自己举例演算一遍便可找到规律c[i][j] = (int) (((long) a[i][0] * b[0][j] + (long) a[i][1] * b[1][j]) % MOD);}}return c;}
}

在这里插入图片描述

3. 参考资料

[1] 一题解带你走进递归和动态规划算法的大门 – 递归改进代码来源
[2] 斐波那契数列(力扣官方题解)-- (Comment 腌菜读作梦想) – 矩阵快速幂解法来源

相关文章:

【LeetCode】剑指 Offer 10- I. 斐波那契数列 p74 -- Java Version

题目链接&#xff1a; 1. 题目介绍&#xff08;&#xff09; 写一个函数&#xff0c;输入 n &#xff0c;求斐波那契&#xff08;Fibonacci&#xff09;数列的第 n 项&#xff08;即 F(N)&#xff09;。斐波那契数列的定义如下&#xff1a; F(0) 0, F(1) 1F(N) F(N - 1) F…...

论文笔记:DropMessage: Unifying Random Dropping for Graph Neural Networks

&#xff08;AAAI 23 优秀论文&#xff09; 1 intro GNN的一个普遍思路是&#xff0c;每一层卷积层中&#xff0c;从邻居处聚合信息 尽管GNN有显著的进步&#xff0c;但是在大规模图中训练GNN会遇到各种问题&#xff1a; 过拟合 过拟合之后&#xff0c;GNN的泛化能力就被限制…...

木鱼cms系统审计小结

MuYuCMS基于Thinkphp开发的一套轻量级开源内容管理系统,专注为公司企业、个人站长提供快速建站提供解决方案。 ​​ ‍ 环境搭建 我们利用 phpstudy 来搭建环境&#xff0c;选择 Apache2.4.39 MySQL5.7.26 php5.6.9 &#xff0c;同时利用 PhpStorm 来实现对项目的调试 ​…...

软件测试面试-一线大厂必问的测试思维面试题

五、测试思维5.1 打电话功能怎么去测&#xff1f;我们会从几个方面去测试&#xff1a;界面、功能、兼容性、易用性、安全、性能、异常。1&#xff09;界面我们会测试下是否跟界面原型图一致&#xff0c;考虑浏览器不同显示比例&#xff0c;屏幕分辨率。2&#xff09;功能&#…...

企业级分布式应用服务 EDAS

什么是企业级分布式应用服务EDAS企业级分布式应用服务EDAS&#xff08;Enterprise Distributed Application Service&#xff09;是一个应用托管和微服务管理的云原生PaaS平台&#xff0c;提供应用开发、部署、监控、运维等全栈式解决方案&#xff0c;同时支持Spring Cloud和Ap…...

弄懂 Websocket 你得知道的这 3 点

1. WebSocket原理 WebSocket同HTTP一样也是应用层的协议&#xff0c;但是它是一种双向通信协议&#xff0c;是建立在TCP之上的。 WebSocket是一种在单个TCP连接上进行全双工通信的协议。WebSocket API也被W3C定为标准。 WebSocket使得客户端和服务器之间的数据交换变得更加简…...

Appium构架及工作原理

一、appium结构简单来说appium充当一个中间服务器的功能&#xff0c;接收来自我们代码的请求&#xff0c;然后发送到手机上进行执行。二、初步认识appium工作过程1.appium是c/s模式的2.appium是基于webdriver协议添加对移动设备自动化api扩展而成的&#xff0c;所以具有和webdr…...

软件架构中“弹性”的多种含义

在软件架构领域的中文文档、书籍中&#xff0c;经常可以看到“弹性”这个专业术语&#xff0c;但在不同的语境下含义可能会不同。 在英语中&#xff0c;elastic 和 resilient 两个单词都可以翻译为“弹性的”&#xff0c;但是它们在软件架构中代表的含义却完全不同&#xff0c…...

JAVA练习57- 罗马数字转整数、位1的个数

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 目录 前言 一、题目1-罗马数字转整数 1.题目描述 2.思路与代码 2.1 思路 2.2 代码 二、题目2-位1的个数 1.题目描述 2.思路与代码 2.1 思路 2.2 代码 总结 前言 …...

C#把图片放到picturebox上的指定位置,PointToClient与PointToScreen解读

1、C#中如何把图片放到picturebox上的指定位置 构造一个跟picturebox1一样大小的Bitmap&#xff0c; 设置给picturebox1&#xff0c; 然后在上面画图 Bitmap image new Bitmap(picturebox1.Size.Width, picturebox1.Size.Height); Graphics device Graphics.FromImage(imag…...

【论文笔记】Manhattan-SDF==ZJU==CVPR‘2022 Oral

Neural 3D Scene Reconstruction with the Manhattan-world Assumption 本文工作&#xff1a;基于曼哈顿世界假设&#xff0c;重建室内场景三维模型。 1.1 曼哈顿世界假设 参考阅读文献&#xff1a;Structure-SLAM: Low-Drift Monocular SLAM in Indoor EnvironmentsIEEE IR…...

环翠区中小学生编程挑战赛题解中学组T4:免费超市

题目描述 OITV电视台最近开设了名为“免费超市”的真人电视节目,在节目中,抽奖选拔的民间志愿者们将随机匹配进行两两对抗赛。每场比赛上,节目组设置 n n n件商品排成一排供选手挑选,两名选手将交替出手选中并拿走商品,每件商品有着不同的价值 a i a_i a...

关于Oracle树形查询(connect by)的学习笔记

1.查找员工 FORD的上级 Note&#xff1a;在查找时&#xff0c;应当注意树形是倒过来的。&#xff08;自下而上&#xff09;&#xff0c;故此父亲节点是MGR &#xff0c;而儿子节点是EMPNO –PRIOR MGREMPNO也是可以的。 以下两种方式均可以实现查找FORD的上级。 SQL> SQ…...

观看课程领奖品!Imagination中国区技术总监全面解读 IMG DXT GPU

此前&#xff0c;我们发布了一系列关于 IMG DXT GPU 的介绍&#xff0c;为了让更多读者了解其背后的技术及应用方向&#xff0c;我们特别邀请 Imagination 中国区技术总监艾克录制全新在线课程&#xff0c;为大家全面解读IMG DXT GPU。 点击这里&#xff0c;马上注册观看&…...

To_Heart—题解——[SCOI2012]奇怪的游戏

题意 link. 给定一个 nmn\times mnm 的棋盘&#xff0c;每次操作可以选择两个相邻的格子&#xff0c;让这两个各自上的数都 1。问最少多少次操作使得所有格子的数相等。如果永远不行则输出-1。 题解 因为相邻两个格子进行操作&#xff0c;而且是方格&#xff0c;所以很容易…...

Spring Boot Hello World 基于 IDEA 案例详解

一、Spring Boot 是什么 世界上最好的文档来源自官方的《Spring Boot Reference Guide》&#xff0c;是这样介绍的&#xff1a; Spring Boot makes it easy to create stand-alone, production-grade Spring based Applications that you can “just run”...Most Spring Boot…...

基于机器学习的异常检测与分析技术

传统的运维方式在监控、问题发现、告警以及故障处理等各个环节均存在明显不足&#xff0c;需要大量依赖人的经验&#xff0c;在数据采集、异常诊断分析、故障处理的效率等方面有待提高。 本关键技术面对传统运维故障处理效率低、问题定位不准确、人力成本高三大痛点&#xff0…...

pytest进阶之html测试报告

pytest进阶之html测试报告 目录&#xff1a;导读 前言 pytest-html生成报告 安装 生成报告 效果 错误用例截图 添加描述 小结 allure2生成报告 安装allure 安装pytest-allure-adaptor插件 生成xml格式报告 添加环境变量 运行allure生成报告 效果 总结 前言 …...

劳特巴赫仿真测试工具Trace32的基本使用(cmm文件)

劳特巴赫 Trace32 调试使用教程 使用PRACTICE 脚本(.cmm) 在TRACE32 中使用PRACTICE 脚本(*.cmm)将帮助你: 在调试器启动时立即执行命令根据您的项目需求自定义TRACE32PowerView用户界面加载应用程序或符号使调试操作具有可重复性, 并可用于验证目的和回归测试 自动启动脚本…...

盘点四种自动化测试模型实例及优缺点

一&#xff0c;线性测试 1.概念&#xff1a; 通过录制或编写对应应用程序的操作步骤产生的线性脚本。单纯的来模拟用户完整的操作场景。 &#xff08;操作&#xff0c;重复操作&#xff0c;数据&#xff09;都混合在一起。 2.优点&#xff1a; 每个脚本相对独立&#xff0…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日&#xff0c;2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席&#xff0c;并作《智能体在安全领域的应用实践》主题演讲&#xff0c;分享了在智能体在安全领域的突破性实践。他指出&#xff0c;百度通过将安全能力…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

Unity UGUI Button事件流程

场景结构 测试代码 public class TestBtn : MonoBehaviour {void Start(){var btn GetComponent<Button>();btn.onClick.AddListener(OnClick);}private void OnClick(){Debug.Log("666");}}当添加事件时 // 实例化一个ButtonClickedEvent的事件 [Formerl…...

从面试角度回答Android中ContentProvider启动原理

Android中ContentProvider原理的面试角度解析&#xff0c;分为​​已启动​​和​​未启动​​两种场景&#xff1a; 一、ContentProvider已启动的情况 1. ​​核心流程​​ ​​触发条件​​&#xff1a;当其他组件&#xff08;如Activity、Service&#xff09;通过ContentR…...