【算法篇】动态规划(二)
![]()
文章目录
- 分割回文字符串
- 编辑距离
- 不同的子序列
- 动态规划解题思路
分割回文字符串
class Solution {
public:bool isPal(string& s,int begin,int end){while(begin<end){if(s[begin]!=s[end]){return false;}begin++;end--;}return true;}int minCut(string s) {int len=s.size();vector<int> segsize(len+1);if(len==0)//空串{return 0;}if(isPal(s,0,len-1))//整体都为回文{return 0;}//进行初始化,每个字符位置的最大分割次数for(int i=1;i<=len;i++){segsize[i]=i-1;}for(int i=2;i<=len;i++){//判断0~i之间是否都为回文,因为要取的是最小值if(isPal(s,0,i-1)){segsize[i]=0;}//下面从j=1开始是因为上面已经将0~i-1已经判断过了for(int j=1;j<i;j++){//j<i&&isPal(s,j,i-1),min(segsize[i],segsize[j]+1)//取最小值,可能为零也可能是距离上一个回文的值加1if(j<i&&isPal(s,j,i-1)){segsize[i]=min(segsize[i],segsize[j]+1);}}}return segsize[len];}
};
class Solution {
public:vector<vector<bool>> GetMat(string & s){int n=s.size();vector<vector<bool>> Mat(n,vector<bool>(n,false));//这里为什么是从大到小遍历,看下面的图片//s[i]==s[j]&&f(i+1;j-1)是回文因为要找i+1;j-1它们之间的区间,也就需要向下查找for(int i=n-1;i>=0;i--){//这里i是小于等于j的for(int j=i;j<n;j++){if(i==j){Mat[i][j]=true;}else if(i+1==j){Mat[i][j]=s[i]==s[j];}else{Mat[i][j]=(s[i]==s[j])&&(Mat[i+1][j-1]);}}}return Mat;}int minCut(string s) {int len=s.size();vector<int> segsize(len+1);vector<vector<bool>> Mat=GetMat(s);if(len==0)//空串{return 0;}if(isPal(s,0,len-1))//整体都为回文{return 0;}//进行初始化,每个字符位置的最大分割次数for(int i=0;i<=len;i++){segsize[i]=i-1;}for(int i=2;i<=len;i++){//判断0~i之间是否都为回文,因为要取的是最小值//下面从j=1开始是因为上面已经将0~i-1已经判断过了for(int j=0;j<i;j++){//j<i&&isPal(s,j,i-1),min(segsize[i],segsize[j]+1)//取最小值,可能为零也可能是距离上一个回文的值加1if(Mat[j][i-1]){segsize[i]=min(segsize[i],segsize[j]+1);}}}return segsize[len];}
};
编辑距离
class Solution {
public:int minDistance(string word1, string word2) {int row=word1.size();int col=word2.size();vector<vector<int>> mindis(row+1,vector<int>(col+1));for(int i=0;i<row+1;i++){mindis[i][0]=i;}//[0][0]位置已经初始化过了for(int j=1;j<col+1;j++){mindis[0][j]=j;}for(int i=1;i<=row;i++){for(int j=1;j<=col;j++){//选择插入或者删除mindis[i][j]=min(mindis[i-1][j],mindis[i][j-1])+1;//替换if(word1[i-1]==word2[j-1])//字符的位置与数组的位置相差一{//如果相等的话,就直接取mindis[i-1][j-1],但是也是需要比较一下的mindis[i][j]=min(mindis[i][j],mindis[i-1][j-1]);}else{//替换和插入删除进行比较,mindis[i-1][j-1]+1因为不相等所以要加一mindis[i][j]=min(mindis[i][j],mindis[i-1][j-1]+1);}}}return mindis[row][col];}
};
不同的子序列
class Solution {
public:int numDistinct(string s, string t) {// if (s.length() < t.length()) return 0;// int row=s.size();// int col=t.size();// //vector<vector<int>> dp(row+1,vector<int>(col+1));// vector<vector<unsigned int>> dp(row+ 1, vector<unsigned int>(col + 1, 0));// dp[0][0]=1;// for(int i=1;i<=row;i++)// {// dp[i][0]=1;// for(int j=1;j<=col;j++)// {// if(s[i-1]==t[j-1])// {// dp[i][j]=dp[i-1][j-1]+dp[i-1][j];// }// else// {// dp[i][j]=dp[i-1][j];// }// }// }// return dp[row][col];//下面的方法解释了空间,思想还是一样的if (s.length() < t.length()) return 0;int row=s.size();int col=t.size();//vector<vector<int>> dp(row+1,vector<int>(col+1));vector<unsigned int> dp(row+ 1);dp[0]=1;for(int i=1;i<=row;i++){//为什么要从大到小进行,dp[j-1]+dp[j];是要取上一行的//所以就导致到从后开始,如果从前开始就会导致并不是从上一行当中取值//而是在该行当中取值for(int j=col;j>0;j--){if(s[i-1]==t[j-1]){dp[j]=dp[j-1]+dp[j];}else{dp[j]=dp[j];}}}return dp[col];}
};
数组当中类型的问题,int,long long,unsigned int
1、long long比unsigned int表示范围大 2、之所以unsigned int没问题,大概是因为编译器优化了(以下为我根据实测情况下的猜测,测试方法为,给unsigned int对象初始化一个超过上限的值,能正确打印出翻转后的值,但如果这个值非常大,则会报错):unsigned int能接受的实际值超过它的上限,当实际值超过unsigned int上限,会自动翻转(
可以理解为取模
)变成一个很小的数。 3、long long则不然,因为不能翻转,累加会越来越大,直到爆炸。
动态规划解题思路
动规状态定义:
状态来源:从问题中抽象状态
抽象状态:每一个状态对应一个子问题
状态的形式可以定义很多,如何验证状态的合理性:1、某一状态的解或者多个状态处理之后解能否对应最终问题的解
2、状态之间可以形成递推关系一维状态VS二维状态(依据问题和题目线索):
首先尝试一维状态
一维状态的合理性不满足时,再去定义二维状态常见问题的状态:
字符串:状态一般对应字串,状态中每次一般增加一个新的字符
矩阵:二维状态–》优化—》一维状态(有机会变为一维,并不是肯定)
相关文章:

【算法篇】动态规划(二)
文章目录 分割回文字符串编辑距离不同的子序列动态规划解题思路 分割回文字符串 class Solution { public:bool isPal(string& s,int begin,int end){while(begin<end){if(s[begin]!s[end]){return false;}begin;end--;}return true;}int minCut(string s) {int lens.si…...

数据库 SQL高级查询语句:聚合查询,多表查询,连接查询
目录 创建学生表聚合查询聚合函数直接查询设置别名查询设置条件查询 常用的聚合函数 分组查询单个字段Group by报错分组查询多字段分组查询 多表查询直接查询重命名查询Students表新建一列CourseID 连接(JOIN)查询INNER JOINRIGHT JOIN, LEFT JOINFULL J…...
pytorch-构建卷积神经网络
构建卷积神经网络 卷积网络中的输入和层与传统神经网络有些区别,需重新设计,训练模块基本一致 import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torchvision import datasets,transforms impor…...
点云从入门到精通技术详解100篇-点云滤波算法及单木信息提取(续)
目录 3.3 点云滤波算法原理概述 3.3.1 坡度滤波算法 3.3.2 基于不规则三角网滤波 3.3.3 数学形态学滤波...
Gartner发布中国科技报告:数据编织和大模型技术崭露头角
近日,全球知名科技研究和咨询机构Gartner发布了关于中国数据分析与人工智能技术的最新报告。报告指出,中国正迎来数据分析与人工智能领域的蓬勃发展,预计到2026年,将有超过30%的白领工作岗位重新定义,生成式人工智能技…...
java八股文面试[数据库]——explain
使用 EXPLAIN 关键字可以模拟优化器来执行SQL查询语句,从而知道MySQL是如何处理我们的SQL语句的。分析出查询语句或是表结构的性能瓶颈。 MySQL查询过程 通过explain我们可以获得以下信息: 表的读取顺序 数据读取操作的操作类型 哪些索引可以被使用 …...

Kafka3.0.0版本——增加副本因子
目录 一、服务器信息二、启动zookeeper和kafka集群2.1、先启动zookeeper集群2.2、再启动kafka集群 三、增加副本因子3.1、增加副本因子的概述3.2、增加副本因子的示例3.2.1、创建topic(主题)3.2.2、手动增加副本存储 一、服务器信息 四台服务器 原始服务器名称原始服务器ip节点…...

升级iOS 17出现白苹果、不断重启等系统问题怎么办?
iOS 17发布后了,很多果粉都迫不及待的将iphone/ipad升级到最新iOS17系统,体验新系统功能。 但部分果粉因硬件、软件的各种情况,导致升级系统后出现故障,比如白苹果、不断重启、卡在系统升级界面等等问题。 如果遇到了这些系统问题…...
6. `Java` 并发基础之`ReentrantReadLock`
前言:随着多线程程序的普及,线程同步的问题变得越来越常见。Java中提供了多种同步机制来确保线程安全,其中之一就是ReentrantLock。ReentrantLock是Java中比较常用的一种同步机制,它提供了一系列比synchronized更加灵活和可控的操…...

float浮动布局大战position定位布局
华子目录 布局方式普通文档流布局浮动布局(浮动主要针对与black,inline元素)float属性浮动用途浮动元素父级高度塌陷 position属性定位篇相对定位(relative为属性值,配合left属性,和top属性使用)…...

算法 数据结构 递归插入排序 java插入排序 递归求解插入排序算法 如何用递归写插入排序 插入排序动图 插入排序优化 数据结构(十)
1. 插入排序(insertion-sort): 是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入 算法稳定性: 对于两个相同的数,经过…...

OpenCV(二十二):均值滤波、方框滤波和高斯滤波
目录 1.均值滤波 2.方框滤波 3.高斯滤波 1.均值滤波 OpenCV中的均值滤波(Mean Filter)是一种简单的滤波技术,用于平滑图像并减少噪声。它的原理非常简单:对于每个像素,将其与其周围邻域内像素的平均值作为新的像素值…...

二叉树的递归遍历和非递归遍历
目录 一.二叉树的递归遍历 1.先序遍历二叉树 2.中序遍历二叉树 3.后序遍历二叉树 二.非递归遍历(栈) 1.先序遍历 2.中序遍历 3.后序遍历 一.二叉树的递归遍历 定义二叉树 #其中TElemType可以是int或者是char,根据要求自定 typedef struct BiNode{TElemType data;stru…...

JDK17:未来已来,你准备好了吗?
🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🦄 博客首页——🐅🐾猫头虎的博客🎐 🐳 《面试题大全专栏》 🦕 文章图文…...
K8s和Docker
Kubernetes(简称为K8s)和Docker是两个相关但又不同的技术。 一、Docker 1、Docker是一种容器化平台,用于将应用程序及其依赖项打包成可移植的容器。 2、Docker容器可以在任何支持Docker的操作系统上运行 好处:提供了一种轻量级…...
使用物理机服务器应该注意的事项
使用物理机服务器应该注意的事项 如今云计算的发展已经遍布各大领域,尽管现在的云服务器火遍全网,但是仍有一些大型企业依旧选择使用独立物理服务器,你知道这是为什么吗?壹基比小鑫来告诉你吧。 独立物理服务器托管业务适合大中…...

py脚本解决ArcGIS Server服务内存过大的问题
在一台服务器上,使用ArcGIS Server发布地图服务,但是地图服务较多,在发布之后,服务器的内存持续处在95%上下的高位状态,导致服务器运行状态不稳定,经常需要重新启动。重新启动后重新进入这种内存高位的陷阱…...
Go语言Web开发入门指南
Go语言Web开发入门指南 欢迎来到Go语言的Web开发入门指南。Go语言因其出色的性能和并发支持而成为Web开发的热门选择。在本篇文章中,我们将介绍如何使用Go语言构建简单的Web应用程序,包括路由、模板、数据库连接和静态文件服务。 准备工作 在开始之前…...

保姆级教程——VSCode如何在Mac上配置C++的运行环境
vscode官方下载: 点击官网链接,下载对应的pkg,安装打开; https://code.visualstudio.com/插件安装 点击箭头所指插件商店按钮,yyds; 下载C/C 插件; 
【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
oracle与MySQL数据库之间数据同步的技术要点
Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异,它们的数据同步要求既要保持数据的准确性和一致性,又要处理好性能问题。以下是一些主要的技术要点: 数据结构差异 数据类型差异ÿ…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

DingDing机器人群消息推送
文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人,点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置,详见说明文档 成功后,记录Webhook 2 API文档说明 点击设置说明 查看自…...

接口自动化测试:HttpRunner基础
相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具,支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议,涵盖接口测试、性能测试、数字体验监测等测试类型…...
HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散
前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说,在叠衣服的过程中,我会带着团队对比各种模型、方法、策略,毕竟针对各个场景始终寻找更优的解决方案,是我个人和我司「七月在线」的职责之一 且个人认为,…...