【100天精通Python】Day55:Python 数据分析_Pandas数据选取和常用操作
目录
Pandas数据选择和操作
1 选择列和行
2 过滤数据
3 添加、删除和修改数据
4 数据排序
Pandas数据选择和操作
Pandas是一个Python库,用于数据分析和操作,提供了丰富的功能来选择、过滤、添加、删除和修改数据。
1 选择列和行
Pandas 提供了多种方式来选择行和列,这取决于您希望获取的数据的类型和结构。
1.1 选择列
(1)使用列标签
使用列标签来选择一个或多个列。您可以将列标签传递给 DataFrame 的索引器,例如
[]。(2)使用
.loc[]方法
.loc[]方法可以根据标签名称选择行和列。对于列选择,可以使用:选择所有行。
1.2 选择行
(1)使用行索引
使用行索引来选择一个或多个行。您可以使用
.loc[]方法或.iloc[]方法。(2)使用
.iloc[]方法
.iloc[]方法使用整数位置来选择行和列。它与.loc[]方法的不同之处在于,它使用整数索引而不是标签。
示例代码:
import pandas as pddata = {'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]}
df = pd.DataFrame(data)# 选择单个列
column_A = df['A']
print("单个列 'A':\n", column_A)
# 结果:
# 单个列 'A':
# 0 1
# 1 2
# 2 3
# Name: A, dtype: int64# 选择多个列
columns_AB = df[['A', 'B']]
print("多个列 'A' 和 'B':\n", columns_AB)
# 结果:
# 多个列 'A' 和 'B':
# A B
# 0 1 4
# 1 2 5
# 2 3 6# 使用 .loc[] 选择列
column_A_loc = df.loc[:, 'A']
print("使用 .loc[] 选择列 'A':\n", column_A_loc)
# 结果:
# 使用 .loc[] 选择列 'A':
# 0 1
# 1 2
# 2 3
# Name: A, dtype: int64# 选择多个列
columns_AB_loc = df.loc[:, ['A', 'B']]
print("使用 .loc[] 选择多个列 'A' 和 'B':\n", columns_AB_loc)
# 结果:
# 使用 .loc[] 选择多个列 'A' 和 'B':
# A B
# 0 1 4
# 1 2 5
# 2 3 6# 使用 .loc[] 选择单个行
row_0_loc = df.loc[0]
print("使用 .loc[] 选择单个行 (索引 0):\n", row_0_loc)
# 结果:
# 使用 .loc[] 选择单个行 (索引 0):
# A 1
# B 4
# C 7
# Name: 0, dtype: int64# 使用 .loc[] 选择多个行
rows_01_loc = df.loc[0:1]
print("使用 .loc[] 选择多个行 (索引 0 到 1):\n", rows_01_loc)
# 结果:
# 使用 .loc[] 选择多个行 (索引 0 到 1):
# A B C
# 0 1 4 7
# 1 2 5 8# 使用 .iloc[] 选择单个行
row_0_iloc = df.iloc[0]
print("使用 .iloc[] 选择单个行 (整数位置 0):\n", row_0_iloc)
# 结果:
# 使用 .iloc[] 选择单个行 (整数位置 0):
# A 1
# B 4
# C 7
# Name: 0, dtype: int64# 使用 .iloc[] 选择多个行
rows_01_iloc = df.iloc[0:2]
print("使用 .iloc[] 选择多个行 (整数位置 0 到 1):\n", rows_01_iloc)
# 结果:
# 使用 .iloc[] 选择多个行 (整数位置 0 到 1):
# A B C
# 0 1 4 7
# 1 2 5 8# 混合选择行和列
subset = df.loc[0:1, ['A', 'B']]
print("选择特定的行和列:\n", subset)
# 结果:
# 选择特定的行和列:
# A B
# 0 1 4
# 1 2 5
2 过滤数据
在Pandas中,您可以使用不同的方法来过滤数据,根据特定条件筛选出满足条件的数据。以下是一些过滤数据的示例和方法:
2.1 基于条件的过滤
通过创建一个条件表达式,您可以选择DataFrame中满足条件的行。
import pandas as pddata = {'A': [1, 2, 3, 4, 5],'B': [10, 20, 30, 40, 50]}
df = pd.DataFrame(data)# 选择满足条件的行,例如 'A' 列大于 3 的行
filtered_data = df[df['A'] > 3]
print(filtered_data)
输出结果:
A B
3 4 40
4 5 50
2.2 使用多个条件
您可以组合多个条件,使用 &(与)和 |(或)等逻辑运算符。
# 选择同时满足多个条件的行,例如 'A' 列大于 2 且 'B' 列小于 30 的行
filtered_data = df[(df['A'] > 2) & (df['B'] < 30)]
print(filtered_data)
输出结果:
A B
2 3 30
2.3 使用 isin() 进行筛选
您可以使用 isin() 方法来筛选出匹配指定值的行。
# 选择 'A' 列中匹配特定值的行
filtered_data = df[df['A'].isin([2, 4])]
print(filtered_data)
输出结果:
A B
1 2 20
3 4 40
2.4 使用字符串方法
如果您的数据包含字符串列,您可以使用字符串方法进行过滤。
data = {'Name': ['Alice', 'Bob', 'Charlie', 'David'],'Age': [25, 30, 35, 40]}
df = pd.DataFrame(data)# 选择包含特定字符串的行
filtered_data = df[df['Name'].str.contains('b', case=False)]
print(filtered_data)
输出结果:
Name Age
1 Bob 30
3 添加、删除和修改数据
3.1 添加数据
(1)添加行
要向 DataFrame 添加新行,通常可以创建一个新的数据项,然后将其附加到 DataFrame。这可以使用
append方法来完成。确保设置ignore_index=True来重置索引。(2)添加列
要添加新列,只需分配一个新的列名并提供相应的数据。这样可以在 DataFrame 中增加新的列,以便存储额外的信息。
3.2 删除数据
(1)删除行
使用
drop方法可以删除指定的行。您可以指定要删除的行的索引或标签,并使用axis=0参数来表示删除行。(2)删除列
要删除列,使用
drop方法并设置axis=1参数,然后指定要删除的列名。这将允许您从 DataFrame 中移除不需要的列。
3.3 修改数据
(1)修改特定单元格的值
要修改 DataFrame 中特定单元格的值,您可以使用
.loc[]方法,通过指定行和列的标签或索引,来更新该单元格的值。(2)更新多个值
要批量更新数据,通常可以使用条件来选择要更新的行,然后赋予新的值。这可以帮助您一次性更新多个数据点,而不必一个一个手动修改。
3.4 代码示例
import pandas as pd# 创建一个示例 DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie'],'Age': [25, 30, 35]}
df = pd.DataFrame(data)# 添加新行
new_row = pd.Series({'Name': 'David', 'Age': 40})
df = df.append(new_row, ignore_index=True)
# 结果:
# Name Age
# 0 Alice 25
# 1 Bob 30
# 2 Charlie 35
# 3 David 40# 添加新列
df['City'] = ['New York', 'Los Angeles', 'Chicago', 'Houston']
# 结果:
# Name Age City
# 0 Alice 25 New York
# 1 Bob 30 Los Angeles
# 2 Charlie 35 Chicago
# 3 David 40 Houston# 删除行
df = df.drop(2) # 删除索引为2的行
# 结果:
# Name Age City
# 0 Alice 25 New York
# 1 Bob 30 Los Angeles
# 3 David 40 Houston# 删除列
df = df.drop('City', axis=1) # 删除名为 'City' 的列
# 结果:
# Name Age
# 0 Alice 25
# 1 Bob 30
# 3 David 40# 修改特定单元格的值
df.loc[1, 'Age'] = 31
# 结果:
# Name Age
# 0 Alice 25
# 1 Bob 31
# 3 David 40# 更新多个值
df.loc[df['Age'] > 30, 'Age'] = 32 # 更新年龄大于30的行的年龄为32
# 结果:
# Name Age
# 0 Alice 25
# 1 Bob 32
# 3 David 32# 输出最终结果
print(df)
4 数据排序
在 Pandas 中,您可以使用 sort_values() 方法对 DataFrame 中的数据进行排序。以下是有关如何进行列排序、包括升序和降序排序,以及如何按多列进行排序。
4.1 按列排序:
要按列对数据进行排序,首先选择要排序的列名称,并使用 sort_values() 方法进行操作。默认情况下,数据将按升序排序。
升序排序:使用
sort_values(by='列名'),其中 '列名' 是您要排序的列的名称。例如,df.sort_values(by='Age')将按 'Age' 列的升序进行排序。降序排序:要按降序排序,可以使用
sort_values(by='列名', ascending=False),其中 '列名' 是您要排序的列的名称。例如,df.sort_values(by='Age', ascending=False)将按 'Age' 列的降序进行排序。
4.2 按多列排序:
如果需要按多列进行排序,您可以通过提供列名称的列表来实现。首先,按列表中的第一个列名进行排序,然后按照列表中的下一个列名进行排序。
例如,要按 'City' 列升序排序,然后按 'Age' 列升序排序,您可以使用
sort_values(by=['City', 'Age'])。
4.3 重置索引:
请注意,排序后的 DataFrame 可能会保留之前的索引顺序。如果希望重新设置索引以匹配新的排序顺序,可以使用
reset_index(drop=True)方法来删除旧的索引并创建一个新的整数索引。
4.4 代码示例
import pandas as pd# 创建一个示例 DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie', 'David'],'Age': [25, 30, 35, 40],'City': ['New York', 'Los Angeles', 'Chicago', 'Houston']}
df = pd.DataFrame(data)# 按列排序
# 默认按升序排序
df_sorted = df.sort_values(by='Age')
# 按照 'Age' 列的升序排序
print("按 'Age' 列的升序排序:\n", df_sorted)# 按照 'Age' 列的降序排序
df_sorted_desc = df.sort_values(by='Age', ascending=False)
print("\n按 'Age' 列的降序排序:\n", df_sorted_desc)# 按多列排序
# 先按 'City' 列升序排序,再按 'Age' 列升序排序
df_multi_sorted = df.sort_values(by=['City', 'Age'])
print("\n按 'City' 列和 'Age' 列的升序排序:\n", df_multi_sorted)# 恢复索引
df_multi_sorted = df_multi_sorted.reset_index(drop=True)
print("\n重置索引后的 DataFrame:\n", df_multi_sorted)
这个示例演示了如何在 Pandas 中按列对数据进行排序,包括升序和降序排序以及按多列排序。您还可以使用
reset_index()方法来重置排序后的 DataFrame 的索引。
相关文章:
【100天精通Python】Day55:Python 数据分析_Pandas数据选取和常用操作
目录 Pandas数据选择和操作 1 选择列和行 2 过滤数据 3 添加、删除和修改数据 4 数据排序 Pandas数据选择和操作 Pandas是一个Python库,用于数据分析和操作,提供了丰富的功能来选择、过滤、添加、删除和修改数据。 1 选择列和行 Pandas 提供了多种…...
f12工具
抓包工具 elements查看器: 可用于自动化脚本的元素定位,前端页面-html页面 Selenium提供了八种定位元素方式 1、id 2、name 3、class_name 4、tag_name 5、link_text 6、partial_link_text 7、XPath(倾向于用相对路径://input【name“phone”】…...
Spring MVC实现RESTful
在 Spring MVC 中,我们可以通过 RequestMapping PathVariable 注解的方式,来实现 RESTful 风格的请求。 1. 通过RequestMapping 注解的路径设置 当请求中携带的参数是通过请求路径传递到服务器中时,我们就可以在 RequestMapping 注解的 val…...
ClickHouse配置Hdfs存储数据
文章目录 背景配置单机配置HA高可用Hdfs集群性能测试统计trait最多的10个trait term统计性状xxx minValue > 500 0000的数量结论 参考文档 背景 由于公司初始使用Hadoop这一套,所以希望ClickHouse也能使用Hdfs作为存储 看了下ClickHouse的文档,拿Hdf…...
zabbix监控网络设备和zabbix proxy
监控linux主机 [rootrocky8 conf]# yum -y install net-snmp vim /etc/snmp/snmpd.conf com2sec notConfigUser default 123456##修改此行,设置团体密码,默认为public,此处 改为123456 view systemview included .1. ##添加此行,自定义授权,否则 zabbix 无法获取数据 [rootr…...
halcon双目标定双相机标定
halcon双目标定 *取消更新 dev_update_off () *获取窗体句柄 dev_get_window (WindowHandle) *设置窗体字体样式 set_display_font (WindowHandle, 16, mono, true, false) *设置线条粗细 dev_set_line_width (3) *创建空对象 gen_empty_obj (ImageL) *读取指定文件内子集 li…...
Vue框架学习记录之环境安装与第一个Vue项目
Node.js的安装与配置 首先是Node.js的安装,安装十分简单,只需要去官网下载安装包后,一路next即可。 Node.js是一个开源的、跨平台的 JavaScript 运行时环境 下载地址,有两个版本,一个是推荐的,一个是最新…...
【DockerCE】Docker-CE 24.0.6正式版发布
官网下载地址(For RHEL/CentOS 7.9): https://download.docker.com/linux/centos/7/x86_64/stable/Packages/ 相对于24.0.5版本,本次24.0.6版本更新的rpm包有 5 个,使用目录对比软件对比的结果如下: 在Lin…...
【管理运筹学】第 7 章 | 图与网络分析(1,图论背景以及基本概念、术语、矩阵表示)
文章目录 引言一、图与网络的基本知识1.1 图与网络的基本概念1.1.1 图的定义1.1.2 图中相关术语1.1.3 一些特殊图类1.1.4 图的运算 1.2 图的矩阵表示1.2.1 邻接矩阵1.2.2 可达矩阵1.2.3 关联矩阵1.2.4 权矩阵 写在最后 引言 按照正常进度应该学习动态规划了,但我想…...
支持CAN FD的Kvaser PCIEcan 4xCAN v2编码: 73-30130-01414-5如何应用?
这里是引用 Kvaser PCIEcan 4xCAN v2(编码: 73-30130-01414-5)是一款小巧而先进的多通道实时CAN接口,可发送和接收CAN总线上的标准和扩展CAN消息,时间戳精度高。其与所有使用Kvaser CANlib的应用程序兼容。 主要特性 PCI Express…...
经济2023---风口
改革开放以来,中国共有12次比较好的阶级跃迁的机会: 包括80年代选部委院校、办乡镇企业、倒卖商品;90年代下海、选外语外贸、炒股;00年代从事资源品行业、选金融、炒房;10年代选计算机、搞互联网、买比特币。 从这里…...
JWFD开源工作流-矩阵引擎设计-高维向量空间分析法
JWFD开源工作流-矩阵引擎设计-高维向量空间分析法 在把已知的流程节点查找到之后,输出下标,但是我们发现,还有一些节点并未被 探测到,遍历并没有完全的完成,仍然有泄露的节点在其中,这个问题…...
WIN10访问Ubuntu的Samba
WIN10访问Ubuntu的Samba 在Ubuntu中安装好Samba后,如果无法在Win10里访问共享目录或者无法进行写操作,可以进行如下检查: 检查用户是否添加到共享和共享组 $ sudo adduser yourname sambashare 可以编辑:,查看文件/etc…...
AbstractExecutorService 抽象类
java.util.concurrent.AbstractExecutorService 是 Java 并发编程中的一个抽象类,它定义了 ExecutorService 接口的基本行为。ExecutorService 是一个接口,它提供了一种以异步方式执行任务的方法。 AbstractExecutorService 类包含以下一些重要的方法: void execute(Runnab…...
Android12 ethernet和wifi共存
1.修改网络优先走wifi packages/modules/Connectivity/service/src/com/android/server/connectivity/NetworkRanker.java -44,7 44,7 import java.util.Arrays;import java.util.Collection;import java.util.List;import java.util.function.Predicate; - import andro…...
记录使用layui弹窗实现签名、签字
一、前言 本来项目使用的是OCX方式做签字的,因为项目需要转到国产化,不在支持OCX方式,需要使用前端进行签字操作 注:有啥问题看看文档,或者换着思路来,本文仅供参考! 二、使用组件 获取jSign…...
【AIGC系列】Stable Diffusion 小白快速入门课程大纲
一、前言 本文是《Stable Diffusion 从入门到企业级应用实战》系列课程的前置学习引导部分,《Stable Diffusion新手完整学习地图课程》的课程大纲。该课程主要的培训对象是: 没有人工智能背景,想快速上手Stable Diffusion的初学者;想掌握St…...
在kali环境下安装Beef-Xss靶场搭建
目录 一、更新安装包 二、安装beef-xss 三、启动Beef-Xss工具 1、查看hook.js 2、查看后台登录地址 3、查看用户名和登录密码 4、登录页面 5、点击 Hook me:将配置的页面导入BEEF中 一、更新安装包 ┌──(root㉿kali)-[/home/kali] └─# apt-get update 二、安装be…...
【Apollo】自动驾驶技术的介绍
阿波罗是百度发布的名为“Apollo(阿波罗)”的向汽车行业及自动驾驶领域的合作伙伴提供的软件平台。 帮助汽车行业及自动驾驶领域的合作伙伴结合车辆和硬件系统,快速搭建一套属于自己的自动驾驶系统。 百度开放此项计划旨在建立一个以合作为中…...
HTML emoji整理 表情符号
<!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><title>测试</title></head><body><div style"font-size: 50px;">🔔</div><script>let count 0d…...
测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...
Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
工程地质软件市场:发展现状、趋势与策略建议
一、引言 在工程建设领域,准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具,正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...
现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...
OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
