利用微调的deberta-v3-large来预测情感分类
前言:
昨天我们讲述了怎么利用emotion数据集进行deberta-v3-large大模型的微调,那今天我们就来输入一些数据来测试一下,看看模型的准确率,为了方便起见,我直接用测试集的前十条数据
代码:
from transformers import AutoModelForSequenceClassification,AutoTokenizer
import torch
import numpytokenizer = AutoTokenizer.from_pretrained("deberta-v3-large")
model = AutoModelForSequenceClassification.from_pretrained("result/checkpoint-500",num_labels=6)raw_inputs = ["im feeling rather rotten so im not very ambitious right now","im updating my blog because i feel shitty","i never make her separate from me because i don t ever want her to feel like i m ashamed with her","i left with my bouquet of red and yellow tulips under my arm feeling slightly more optimistic than when i arrived","i was feeling a little vain when i did this one","i cant walk into a shop anywhere where i do not feel uncomfortable","i felt anger when at the end of a telephone call","i explain why i clung to a relationship with a boy who was in many ways immature and uncommitted despite the excitement i should have been feeling for g
etting accepted into the masters program at the university of virginia","i like to have the same breathless feeling as a reader eager to see what will happen next","i jest i feel grumpy tired and pre menstrual which i probably am but then again its only been a week and im about as fit as a walrus on vacation for thesummer"
]
inputs = tokenizer(raw_inputs, padding=True, truncation=True, return_tensors="pt")
outputs = model(**inputs)
print(outputs.logits.argmax(-1).numpy())output_tensor = torch.softmax(outputs.logits, dim=1)numpy.set_printoptions(suppress=True, precision=15)
print(output_tensor.detach().numpy())
标注结果:
[0 0 0 1 0 4 3 1 1 3]
测试结果:
[0 0 0 1 0 4 4 2 1 3]
[[0.99185866 0.0011510316 0.00038844926 0.0026896652 0.00296234010.00094986777][0.9918577 0.0011512033 0.00038886679 0.0026923663 0.00295853150.000951257 ][0.99185807 0.0011446937 0.00038163515 0.0026456509 0.00303544850.00093440723][0.00041773843 0.9972398 0.0014854104 0.0002909223 0.000362315240.00020376328][0.99185014 0.0011451623 0.00038086114 0.0026396883 0.00305240350.00093187904][0.015044774 0.0025362356 0.00041989447 0.015223678 0.950097140.016678285 ][0.11319714 0.030935207 0.007336047 0.3035547 0.475454330.069522515 ][0.0011094044 0.18334262 0.8081213 0.0011003793 0.00072979650.005596481 ][0.0004444314 0.9972433 0.0014491597 0.00028465112 0.000374119760.00020446534][0.00241266 0.00079152075 0.00092184055 0.9924028 0.00241092480.0010602956 ]]
结果对比:
除了第七、第八条数据错误外,其他的八条数据都是正确的
代码解释:
1、raw_inputs:用户输入的数据,这个地方你可以使用一个while循环,然后使用input来与用户进行交互,需要注意的是这个必须是一个数组,哪怕用户只输入了一句文本。
2、return_tensors="pt":表示tokenizer返回的是PyTorch格式的数据
3、argmax(-1):将logits属性中的浮点数张量沿着最后一个轴(即-1轴)进行argmax操作,从而找到该张量中最大值所对应的标签编号。
4、softmax(outputs.logits, dim=1):dim指沿着哪个维度计算softmax,通常指定为1,表示对每一行进行softmax操作。如果不指定,则默认在最后一维计算softmax。
5、numpy.set_printoptions(suppress=True, precision=15):使用 numpy.set_printoptions()
函数来设置打印选项,从而调整打印输出格式。其中,suppress
选项可以关闭科学计数法,precision
选项可以设置打印精度。
相关文章:
利用微调的deberta-v3-large来预测情感分类
前言: 昨天我们讲述了怎么利用emotion数据集进行deberta-v3-large大模型的微调,那今天我们就来输入一些数据来测试一下,看看模型的准确率,为了方便起见,我直接用测试集的前十条数据 代码: from transfor…...

opencv旋转图像
0 、使用旋转矩阵旋转 import cv2img cv2.imread(img.jpg, 1) (h, w) img.shape[:2] # 获取图像的宽和高# 定义旋转中心坐标 center (w / 2, h / 2)# 定义旋转角度 angle 90# 定义缩放比例 scale 1# 获得旋转矩阵 M cv2.getRotationMatrix2D(center, angle, scale)# 进行…...

容器资料: Docker和Singularity
容器资料 Docker和Singularity Docker比较适合测试: 环境适配,每种环境对应一个容器。Docker需要host宿主机上运行Docker服务(root权限),隔离性很高,但会牺牲性能,对GPU环境支持不好(需要安装NVIDIAN公司的插件才能把GPU暴露给container) Sigularity可…...

如何确认linux的包管理器是yum还是apt,确认之后安装其他程序的时候就需要注意安装命令
打开终端 输入apt,下图中提示未找到命令,则基本上包管理工具就是用yum的 输入yum,我们看到有打印信息,则说明包管理工具是yum的,离线安装命令使用rpm...

数据分享|R语言分析上海空气质量指数数据:kmean聚类、层次聚类、时间序列分析:arima模型、指数平滑法...
全文链接:http://tecdat.cn/?p30131 最近我们被客户要求撰写关于上海空气质量指数的研究报告。本文向大家介绍R语言对上海PM2.5等空气质量数据(查看文末了解数据免费获取方式)间的相关分析和预测分析,主要内容包括其使用实例&…...

MySQL 8.0.34安装教程
一、下载MySQL 1.官网下载 MySQL官网下载地址: MySQL :: MySQL Downloads ,选择下载社区版(平时项目开发足够了) 2.点击下载MySQL Installer for Windows 3.选择版本8.0.34,并根据自己需求,选择下载全社区安…...

用通俗易懂的方式讲解大模型分布式训练并行技术:概述
近年来,随着Transformer、MOE架构的提出,使得深度学习模型轻松突破上万亿规模参数,传统的单机单卡模式已经无法满足超大模型进行训练的要求。因此,我们需要基于单机多卡、甚至是多机多卡进行分布式大模型的训练。 而利用AI集群&a…...
NodeJS入门以及文件模块fs模块
NodeJS入门以及文件模块fs模块,本章节会详细带大家进入NodeJS开发,了解什么是模块化、文件系统 模块化的详解什么是模块什么是模块化ESM模块化开发CommonJS模块化操作 模块的分类内置模块 一个小知识Buffer的使用buffer常见的方法 事件监听模块events常用…...
springboot集成Elasticsearch7.16,使用https方式连接并忽略SSL证书
千万万苦利用科学上网找到了,记录一下 package com.warn.config.baseconfig;import co.elastic.clients.elasticsearch.ElasticsearchClient; import co.elastic.clients.json.jackson.JacksonJsonpMapper; import co.elastic.clients.transport.ElasticsearchTran…...

【已解决】pycharm 突然每次点击都开新页面,关不掉怎么办?
今天在 pycharm 中写代码,突然发现,新开的文件不再原来的页面上,而是新增了页面,导致整个屏幕全都是新开的页面,最难受的是,关不掉! 无奈,我只能关闭 pycharm,重新双击…...

AndroidStudio最下方显示不出来Terminal等插件
File->Settings->Plugins 然后在上面的输入框中输入Terminal,并将最右侧的对勾打上即可。 安装即可...
python基础操作笔记
一,pickle读写json格式文件pkl k Out[15]: {k1: 2, k3: 4}with open("test822.pkl","wb") as f:pickle.dump(k,f,) with open("test822.pkl","rb") as f:kk=pickle.load(f)kk==k Out[20]: True 二、docker删除image docker rmi …...
c++ 学习 之 指针常量 和 常量指针
前言 在 C 中,指针常量(constant pointer)和常量指针(pointer to constant)是两种不同类型的指针,它们具有不同的含义和用途。 正文 指针常量(constant pointer): 指针…...

Redis未授权访问漏洞实战
文章目录 概述Redis概述Redis 介绍Redis 简单使用Redis未授权漏洞危害 漏洞复现启动靶场环境POC漏洞验证EXP漏洞利用 总结 本次测试仅供学习使用,如若非法他用,与平台和本文作者无关,需自行负责! 概述 本文章主要是针对于vulh…...

【web开发】2、css基础
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 一、CSS是什么?二、使用步骤2.1.css的存放位置2.2.选择器2.3.常用CSS样式介绍与示例 一、CSS是什么? 层叠样式表(英文全称:Casc…...

循迹小车原理介绍和代码示例
目录 循迹小车 1. 循迹模块使用 2. 循迹小车原理 3. 循迹小车开发和调试代码 循迹小车 1. 循迹模块使用 TCRT5000传感器的红外发射二极管不断发射红外线当发射出的红外线没有被反射回来或被反射回来但强度不够大时红外接收管一直处于关断状态,此时模块的输出…...

redis未授权访问
文章目录 搭建环境漏洞复现安装Exlopit并使用 前提条件: 1.安装docker docker pull medicean/vulapps:j_joomla_22.安装docker-compose docker run -d -p 8000:80 medicean/vulapps:j_joomla_23.下载vulhub 搭建环境 输入下面命令,来到Redis的路径下&am…...

【数学建模竞赛】优化类赛题常用算法解析
优化类建模 问题理解和建模:首先,需要深入理解问题,并将问题抽象为数学模型。这包括确定问题的目标函数、约束条件和决策变量。 模型分析和求解方法选择:对建立的数学模型进行分析,可以使用数学工具和方法,…...

Python实现SSA智能麻雀搜索算法优化LightGBM回归模型(LGBMRegressor算法)项目实战
说明:这是一个机器学习实战项目(附带数据代码文档视频讲解),如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 麻雀搜索算法(Sparrow Search Algorithm, SSA)是一种新型的群智能优化算法,在2020年提出&a…...

OpenCV(二十一):椒盐噪声和高斯噪声的产生
目录 1.图像噪声介绍 2.椒盐噪声的产生 3.高斯噪声的产生 1.图像噪声介绍 噪声介绍 图像噪声是指在图像中存在的不期望的、随机的像素值变化,这些变化来源于多种因素。噪声可能导致图像细节模糊、失真或难以分辨。 以下是几种常见的图像噪声类型: 1…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...

初学 pytest 记录
安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...

力扣热题100 k个一组反转链表题解
题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...

如何更改默认 Crontab 编辑器 ?
在 Linux 领域中,crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用,用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益,允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...
第7篇:中间件全链路监控与 SQL 性能分析实践
7.1 章节导读 在构建数据库中间件的过程中,可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中,必须做到: 🔍 追踪每一条 SQL 的生命周期(从入口到数据库执行)&#…...
Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?
Pod IP 的本质与特性 Pod IP 的定位 纯端点地址:Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址(如 10.244.1.2)无特殊名称:在 Kubernetes 中,它通常被称为 “Pod IP” 或 “容器 IP”生命周期:与 Pod …...
c# 局部函数 定义、功能与示例
C# 局部函数:定义、功能与示例 1. 定义与功能 局部函数(Local Function)是嵌套在另一个方法内部的私有方法,仅在包含它的方法内可见。 • 作用:封装仅用于当前方法的逻辑,避免污染类作用域,提升…...