深度学习之视频分类项目小记
写在前面,最近一阵在做视频分类相关的工作,趁有时间来记录一下。本文更注重项目实战与落地,而非重点探讨多模/视频模型结构的魔改
零、背景
- 目标:通过多模态内容理解技术,构建视频层级分类体系
- 原技术方案:
a. 分别用 inception-Resnetv2/bert/vggish处理视觉/文本/音频特征,再用 netvlad 处理时序特征,再用 AFM/self-attention融合各模态信息
b. 方案缺点很明显,1)模块太多,维护成本太高;2)各模块独立训练,用每个模块最优的模型组合起来未必效果最好,如何选择各合适的模块不好确定 - 新技术方案:
a. attenion 一把梭,各种模态的信息直接送入类 bert 去处理,利用对比学习模型 cn-clip 提升视觉与文本对齐能力,采用 mlm、itc 、itm、mmm等多种预训练任务增强模态间交互,结合 rdrop、fgm等训练算法提升泛化性能,使用知识蒸馏与难例挖掘等手段提升样本标出率,借助 class balance 与 label smoothing 改善类别不均衡问题
b. 新方案效果提升明显,模块也少,维护起来成本也低
c. 新方案为 2022 某视频分类比赛第 8 名
一、技术手段
1、模型方面

1)单流模型
-
结构:模型一
- 文本过embedding层,视频过zn_clip的vit,然后拼接起来送入bert,最后mean pooing后接分类层
-
优点:
- 架构简单、预训练好做,参数少
服务性能:a10卡,vit + bert 的 qps =9 左右
2)双流模型:
- 结构:
- 模型二:文本过bert,视频过clip,然后将视频向量和文本向量拼接起来,再过一个transformer,mean pooing后接分类层
- 模型三,文本过bert,视频过clip,得到视频向量和文本向量,然后做cross attention,即对于视频向量,用文本向量作为Q进行注意力加权,而对于文本向量,用视频向量作为Q进行注意力加权,最后mean pooing后接分类层
- 优点:
- 相当于一种后融合,先让每个模态单独学更好的特征,再去做融合,效果理论上也会更好
3)训练 tricks
-
训练手段
1)r-drop: acc 上升 71%—>71.7%
2)swa:平均最高 3 个 checkpoints权重,模型准确率略有提升(71.7%->71.8%)
4)ema:acc 71.879% -> 71.975%
5)fgm对抗训练,acc 71.975% -> 72.206%
6)word-base:acc 72.206% -> 72.4%
7)ensemble:model1(72.638%) + model2(72.785%)—> acc 73.601%
8)训练帧数增加:帧数从 10—>30,acc 67.308 -> 67.782
9)图片尺寸:resize224x224 —> centercrop,acc 72.4—>73
-
loss 改进
- 类别不均衡问题:label smoothing 和 class balanced loss 融合,acc 71.750% -> 71.879%
- 层级分类问题:细粒度分类+粗粒度分类、细粒度分类映射、hmc los
4)预训练
- mlm、mfm、itm、itc、mmm、mma

2、数据方面
1)数据准备
- 类别关系映射 + 大量人标注,累计积累了 103 w 数据
- 基于初版模型,根据top1&top2 的预测分数,捞取边界数据,提升标出率
2)数据清洗
- N 折交叉验证
- 训练早停,筛选 diff 数据
3)伪数据构造
- 知识蒸馏
- 标注数据上,使用更多帧、更大模型(clip-large)、不同模型架构,训练n 个模型
- 使用 i 得到的 n 个模型ensemble 为无标注数据打伪标签
- 在 ii 的伪标签数据上做预训练,预训练任务及伪标签分类,预训练时随机使用10/30帧的视频,以缓解预训练和微调过程不一致
- 重复 ii、iii,用最后得到的模型做微调初始化
- 在有标注数据上进行微调
- 基于检索的伪标签
- 标注数据上,训练 DML 模型并提取特征
- 无标记数据检索有标记数据,对 top10 样本进行类别投票,生成伪标签
3、后处理方面
- 不同类别给予不同的缩放系数,大类为 1,效率大于 1,使用粒子群优化算法pso搜一个也行
- 模型能力总归是有限的,根据业务需要,结合人审,制定合适的送审策略也是重要的
4、外部信号
1)结合先验特征,比如作者主垂类信息、作者兴趣点、作者认证信息、同作者发布内容等
2)结合后验信号,视频评论,点赞、完播率等
相关文章:
深度学习之视频分类项目小记
写在前面,最近一阵在做视频分类相关的工作,趁有时间来记录一下。本文更注重项目实战与落地,而非重点探讨多模/视频模型结构的魔改 零、背景 目标:通过多模态内容理解技术,构建视频层级分类体系原技术方案:…...
pandas(四十三)Pandas实现复杂Excel的转置合并
一、Pandas实现复杂Excel的转置合并 读取并筛选第一张表 df1 pd.read_excel("第一个表.xlsx") df1# 删除无用列 df1 df1[[股票代码, 高数, 实际2]].copy() df1df1.dtypes股票代码 int64 高数 float64 实际2 int64 dtype: object读取并处理第二张表…...
42、springboot 的 路径匹配 和 内容协商
springboot 的 路径匹配 和 内容协商 对于路径匹配,自己的总结就是: 以前路径匹配时默认不检查后缀,http://localhost:8080/aaa.json 可以直接访问到 RequstMapping(“/aaa”) 的方法。现在不行了。现在会检查后缀了。 内容协商的理解总结&…...
一文讲解Linux内核内存管理架构
内存管理子系统可能是linux内核中最为复杂的一个子系统,其支持的功能需求众多,如页面映射、页面分配、页面回收、页面交换、冷热页面、紧急页面、页面碎片管理、页面缓存、页面统计等,而且对性能也有很高的要求。本文从内存管理硬件架构、地址…...
教你如何使用API接口获取数据
随着互联网技术的发展和应用的普及,越来越多的系统和应用提供API接口供其他系统和应用进行数据交互。通过API接口,我们可以获取到各种各样的数据,例如天气预报、股票行情、新闻摘要等等。本文将介绍如何使用API接口获取数据,并附有…...
集美大学计算机改考408!福建省全面改考,仅剩一个自命题院校
9月5日,集美大学发布通知,0835软件工程、0854电子信息2024考试科目发生变更!由822数据结构调整为408计算机学科专业基础 https://zsb.jmu.edu.cn/info/1532/4701.htm 直接由一门改为考四门,难度升级不小。 目前福建省内计算机考…...
Hololens2部署很慢可能是unity工程选择不对
这样就很快,几分钟就完成了。(虽然又遇到新问题了) 第一次使用时如下,直接运行了一个多小时还没有完...
群论学习记录
群论学习记录 1. 2023.09.07 1. 2023.09.07 群论 (Group Theory) 终极速成 / 物理系零基础火箭级 notes https://zhuanlan.zhihu.com/p/378039151 https://zhuanlan.zhihu.com/p/164653537 群的定义重排定理子群陪集定理:由重排定理可推出1.4-(2&#x…...
Fiddler安装与使用教程(2) —— 软测大玩家
😏作者简介:博主是一位测试管理者,同时也是一名对外企业兼职讲师。 📡主页地址:【Austin_zhai】 🙆目的与景愿:旨在于能帮助更多的测试行业人员提升软硬技能,分享行业相关最新信息。…...
ChatGPT集锦
目录 1. 一条指令让ChatGPT变的更强大2. 对ChatGPT提问时,常见的10种错误描述3. Custom instructions如何设置1. 一条指令让ChatGPT变的更强大 在使用GPT的过程中,如何让AI更清晰地了解你的需求很重要?今天分享一个指令,可以让GPT成为你的好同事,与你一起分析和解决问题,…...
CRM系统中的工作流管理及其重要性
工作流是CRM系统中较为常见的功能,它可以有效减少重复工作、提高销售效率。如果您想深入了解,本文就来详细说说,CRM工作流是什么?工作流的作用? 什么是CRM工作流? CRM工作流是指在CRM系统中,根…...
Go framework-go-zero
一、Go Go天然适配云原生,而云原生时代已经到来,各个应用组件基础设施等都应该积极的去拥抱云原生。 不要让框架束缚开发。 1、go-zero介绍 go-zero 是一个集成了各种工程实践的 web 和 rpc 框架。通过弹性设计保障了大并发服务端的稳定性,…...
【Python】【Fintech】用Python和蒙特卡洛法预测投资组合未来收益
【背景】 想利用蒙特卡洛方法和yahoo,stooq等财经网站上的数据快速预测特定portfolio的收益。 【分析】 整个程序的功能包括 读取json中的portfolio组合创建蒙特卡洛模拟预测收益的算法创建从财经网站获得特定投资组合数据,并根据2的算法获得该Index或Portfolio收益预测结…...
网络层重点协议-IP协议(结构分析)
IP协议数据报格式 一.4位版本号 用来表示IP协议的版本,现有的IP协议只有两个版本IPv4和IPv6 二.4位首部长度 IP协议数据报报头的长度 三.8位服务类型 3位优先权字段(已经弃用),4位TOS字段,和1位保留 字段(必…...
windows使用vim编辑文本powershell
windows使用vim编辑文本 1、安装 chocolatey 包 以管理员身份打开 PowerShell 进行安装 Set-ExecutionPolicy Bypass -Scope Process -Force; iex ((New-Object System.Net.WebClient).DownloadString(https://chocolatey.org/install.ps1))2、管理员身份打开 PowerShell 并使…...
学单片机有前途吗?
学单片机有前途吗? 个人认为学习任何一门技术都比不学的强,针对学单片机有前途吗?那么比较对象当然就是在整个IT行业做对比。因此我们可以从职业前景、钱景、这几方面综合考量。 学单片机有前途吗?我觉得重要的一点就是是否适合职业生涯发展,总说程序…...
【计算机网络】 子网划分
文章目录 IP地址分类子网掩码网关广播地址非默认子网掩码子网划分常见问题 IP地址分类 学会十进制和二进制的相互转换可以很快速的有规律的记住 子网掩码 又叫网络掩码,地址掩码,子网络遮罩,就是说把子网络遮起来,不让外界窥探到…...
vscode ros配置
【ROS】VSCODE ROS 配置方法(保姆级教程,总结了多篇)_ros vscode_晴明大大的博客-CSDN博客...
【权限提升-Windows提权】-UAC提权之MSF模块和UACME项目-DLL劫持-不带引号服务路径-不安全的服务权限
权限提升基础信息 1、具体有哪些权限需要我们了解掌握的? 后台权限,网站权限,数据库权限,接口权限,系统权限,域控权限等 2、以上常见权限获取方法简要归类说明? 后台权限:SQL注入,数…...
【C++】—— 特殊类设计
目录 序言 (一)设计一个不能被拷贝的类 (二)设计一个只能在堆上创建对象的类 (三)设计一个只能在栈上创建对象的类 (四)设计一个不能被继承的类 总结 序言 特殊类设计是指在面…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...
新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...
select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...
Selenium常用函数介绍
目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...
iview框架主题色的应用
1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题,无需引入,直接可…...
TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?
在工业自动化持续演进的今天,通信网络的角色正变得愈发关键。 2025年6月6日,为期三天的华南国际工业博览会在深圳国际会展中心(宝安)圆满落幕。作为国内工业通信领域的技术型企业,光路科技(Fiberroad&…...
Python网页自动化Selenium中文文档
1. 安装 1.1. 安装 Selenium Python bindings 提供了一个简单的API,让你使用Selenium WebDriver来编写功能/校验测试。 通过Selenium Python的API,你可以非常直观的使用Selenium WebDriver的所有功能。 Selenium Python bindings 使用非常简洁方便的A…...
安宝特方案丨从依赖经验到数据驱动:AR套件重构特种装备装配与质检全流程
在高压电气装备、军工装备、石油测井仪器装备、计算存储服务器和机柜、核磁医疗装备、大型发动机组等特种装备生产型企业,其产品具有“小批量、多品种、人工装配、价值高”的特点。 生产管理中存在传统SOP文件内容缺失、SOP更新不及、装配严重依赖个人经验、产品装…...
