java八股文面试[多线程]——newWorkStealingPool
newWorkStealingPool是什么?
newWorkStealingPool简单翻译是任务窃取线程池。
newWorkStealingPool 是Java8添加的线程池。和别的4种不同,它用的是ForkJoinPool。
使用ForkJoinPool的好处是,把1个任务拆分成多个“小任务”,把这些“小任务”分发到多个线程上执行。这些“小任务”都执行完成后,再将结果合并。
之前的线程池中,多个线程共有一个阻塞队列,而newWorkStealingPool 中每一个线程都有一个自己的队列。
当线程发现自己的队列没有任务了,就会到别的线程的队列里获取任务执行。可以简单理解为”窃取“。
一般是自己的本地队列采取LIFO(后进先出),窃取时采用FIFO(先进先出),一个从头开始执行,一个从尾部开始执行,由于偷取的动作十分快速,会大量降低这种冲突,也是一种优化方式。
它有2种实现,如下:
无参
public static ExecutorService newWorkStealingPool() {return new ForkJoinPool(Runtime.getRuntime().availableProcessors(),ForkJoinPool.defaultForkJoinWorkerThreadFactory,null, true);
}
Runtime.getRuntime().availableProcessors()是获取当前系统可以的CPU核心数。
有参
就一个参数parallelism,可以自定义并行度。
public static ExecutorService newWorkStealingPool(int parallelism) {return new ForkJoinPool(parallelism,ForkJoinPool.defaultForkJoinWorkerThreadFactory,null, true);
}
newWorkStealingPool测试案例
public class Thread08_WorkStealing {public static void main(String[] args) {ExecutorService executorService = Executors.newWorkStealingPool(3);for (int i=1; i<= 100; i++){executorService.submit(new MyWorker(i));}while (true){}}
}
运行结果:
ForkJoinPool-1-worker-2正在执行,数值:2
ForkJoinPool-1-worker-1正在执行,数值:1
ForkJoinPool-1-worker-3正在执行,数值:3
ForkJoinPool-1-worker-2正在执行,数值:5
ForkJoinPool-1-worker-1正在执行,数值:4
ForkJoinPool-1-worker-3正在执行,数值:6
ForkJoinPool-1-worker-2正在执行,数值:8
ForkJoinPool-1-worker-3正在执行,数值:9
ForkJoinPool-1-worker-1正在执行,数值:7
。。。。。。
发现确实创建了3个线程来执行任务。
把newWorkStealingPool(3)中参数去掉改成newWorkStealingPool(),结果如下:
ForkJoinPool-1-worker-1正在执行,数值:1
ForkJoinPool-1-worker-3正在执行,数值:3
ForkJoinPool-1-worker-2正在执行,数值:2
ForkJoinPool-1-worker-4正在执行,数值:4
ForkJoinPool-1-worker-5正在执行,数值:5
ForkJoinPool-1-worker-6正在执行,数值:6
ForkJoinPool-1-worker-7正在执行,数值:7
ForkJoinPool-1-worker-0正在执行,数值:8
ForkJoinPool-1-worker-6正在执行,数值:10
ForkJoinPool-1-worker-2正在执行,数值:13
ForkJoinPool-1-worker-0正在执行,数值:15
。。。。。。
发现确实创建了8个线程共同完成任务,因为我CPU有8个核。
ThreadPoolExecutor的核心点:
在ThreadPoolExecutor中只有一个阻塞队列存放当前任务
ForkJoinPool从名字上就能看出一些东西。当有一个特别大的任务时,如果采用上述方式,这个大任务只能会某一个线程去执行。ForkJoin第一个特点是可以将一个大任务拆分成多个小任务,放到当前线程的阻塞队列中。其他的空闲线程就可以去处理有任务的线程的阻塞队列中的任务
来一个比较大的数组,里面存满值,计算总和
单线程处理一个任务:
/** 非常大的数组 */
static int[] nums = new int[1_000_000_000];
// 填充值
static{for (int i = 0; i < nums.length; i++) {nums[i] = (int) ((Math.random()) * 1000);}
}
public static void main(String[] args) {// ===================单线程累加10亿数据================================System.out.println("单线程计算数组总和!");long start = System.nanoTime();int sum = 0;for (int num : nums) {sum += num;}long end = System.nanoTime();System.out.println("单线程运算结果为:" + sum + ",计算时间为:" + (end - start));
}
多线程分而治之的方式处理:
/** 非常大的数组 */
static int[] nums = new int[1_000_000_000];
// 填充值
static{for (int i = 0; i < nums.length; i++) {nums[i] = (int) ((Math.random()) * 1000);}
}
public static void main(String[] args) {// ===================单线程累加10亿数据================================System.out.println("单线程计算数组总和!");long start = System.nanoTime();int sum = 0;for (int num : nums) {sum += num;}long end = System.nanoTime();System.out.println("单线程运算结果为:" + sum + ",计算时间为:" + (end - start));// ===================多线程分而治之累加10亿数据================================// 在使用forkJoinPool时,不推荐使用Runnable和Callable// 可以使用提供的另外两种任务的描述方式// Runnable(没有返回结果) -> RecursiveAction// Callable(有返回结果) -> RecursiveTaskForkJoinPool forkJoinPool = (ForkJoinPool) Executors.newWorkStealingPool();System.out.println("分而治之计算数组总和!");long forkJoinStart = System.nanoTime();ForkJoinTask<Integer> task = forkJoinPool.submit(new SumRecursiveTask(0, nums.length - 1));Integer result = task.join();long forkJoinEnd = System.nanoTime();System.out.println("分而治之运算结果为:" + result + ",计算时间为:" + (forkJoinEnd - forkJoinStart));
}private static class SumRecursiveTask extends RecursiveTask<Integer>{/** 指定一个线程处理哪个位置的数据 */private int start,end;private final int MAX_STRIDE = 100_000_000;// 200_000_000: 147964900// 100_000_000: 145942100public SumRecursiveTask(int start, int end) {this.start = start;this.end = end;}@Overrideprotected Integer compute() {// 在这个方法中,需要设置好任务拆分的逻辑以及聚合的逻辑int sum = 0;int stride = end - start;if(stride <= MAX_STRIDE){// 可以处理任务for (int i = start; i <= end; i++) {sum += nums[i];}}else{// 将任务拆分,分而治之。int middle = (start + end) / 2;// 声明为2个任务SumRecursiveTask left = new SumRecursiveTask(start, middle);SumRecursiveTask right = new SumRecursiveTask(middle + 1, end);// 分别执行两个任务left.fork();right.fork();// 等待结果,并且获取sumsum = left.join() + right.join();}return sum;}
}
最终可以发现,这种累加的操作中,采用分而治之的方式效率提升了2倍多。
但是也不是所有任务都能拆分提升效率,首先任务得大,耗时要长。
知识来源:
Java多线程(十四) Java8 newWorkStealingPool 线程池_瑟王的博客-CSDN博客
相关文章:

java八股文面试[多线程]——newWorkStealingPool
newWorkStealingPool是什么? newWorkStealingPool简单翻译是任务窃取线程池。 newWorkStealingPool 是Java8添加的线程池。和别的4种不同,它用的是ForkJoinPool。 使用ForkJoinPool的好处是,把1个任务拆分成多个“小任务”,把这…...

STM32--RTC实时时钟
文章目录 Unix时间戳时间戳转换BKPRTC简介RTC框图硬件电路RTC的注意事项RTC时钟实验工程 Unix时间戳 Unix 时间戳是从1970年1月1日(UTC/GMT的午夜)开始所经过的秒数,不考虑闰秒。 时间戳存储在一个秒计数器中,秒计数器为32位/64…...
【N2】例题学习笔记
N2例题 《新"日本语能力测试"例题集》 听力原稿(PDF) 【10】 【問い】この筆者から見た「仕事ができる人」の特徴はどんなことか。 【提问】这位作者认为,仕事能力强的人具有什么特点呢? 【11】 文章 下の文章は、企業のあり方について…...

【数据分享】2006-2021年我国城市级别的道路、桥梁、管线建设相关指标(10多项指标)
《中国城市建设统计年鉴》中细致地统计了我国城市市政公用设施建设与发展情况,在之前的文章中,我们分享过基于2006-2021年《中国城市建设统计年鉴》整理的2006—2021年我国城市级别的市政设施水平相关指标、2006-2021年我国城市级别的各类建设用地面积数…...
视觉SLAM14讲笔记-第7讲-视觉里程计2
直接法的引出 直接法是视觉里程计另一个主要分支,它与特征点法有很大的不同。 使用特征点法估计相机运动时,我们把特征点看作固定在三维空间的不动点。根据它们在相机中的投影位置,通过最小化重投影误差来优化相机运动。 相对地,…...
MySQL——单行函数和分组函数
2023.9.3 单行函数的SQL语句学习笔记如下: #常见单行函数介绍(部分省略) #字符函数 #将姓变大写,名变小写,然后拼接。 SELECT CONCAT(UPPER(last_name), ,LOWER(first_name)) AS 姓名 FROM employees; # 姓名中首字符…...

百度百科词条怎么更新?怎么能顺利更新百科词条?
企业和个人百度百科词条的更新对于他们来说都具有重要的意义,具体如下: 对企业来说: 塑造品牌形象:百度百科是一个常被用户信任并参考的知识平台,通过更新企业词条可以提供准确、全面的企业信息,帮助企业塑…...

PPT怎么转换为PDF格式,收藏这两个在线工具。
PPT是一种常用的演示文稿格式,它可以包含丰富的动画效果和超链接,让你的内容更加生动和有趣。但是,如果你想将PPT分享给别人,或者在不同的设备上查看,你可能会遇到一些问题,比如: PPT文件太大&a…...
八大排序算法----堆排序
堆排序的基本步骤:(以从大到小的顺序排序为例) 1.构建大顶堆(每个结点的值都大于或等于其左右孩子结点的值) 2.排序:每次堆顶的元素取出来(整个堆中值最大),与最后一个…...

Docker Desktop 设置镜像环境变量
点击run 展开Optional settings container name :容器名称 Ports:根据你需要的端口进行输入,不输入则默认 后面这个 比如我这个 5432 Volumes:卷,也就是做持久化 需要docker 数据保存的地方 Environment variables…...

springboot之一:配置文件(内外部配置优先顺序+properties、xml、yaml基础语法+profile动态切换配置、激活方式)
配置的概念: Spring Boot是基于约定的,所以很多配置都有默认值,但如果想使用自己的配置替换默认配置的话,就可以使用application.properties或者application.yml(application.yaml)进行配置。 注意配置文件的命名必须是applicat…...

涛然自得周刊(第 5 期):蝲蛄吟唱的地方
作者:何一涛 日期:2023 年 8 月 20 日 涛然自得周刊主要精选作者阅读过的书影音内容,不定期发。历史周刊内容可以看这里。 电影 《沼泽深处的女孩》 改编自小说《蝲蛄吟唱的地方》,主角是一位在沼泽地独自生活并长大的女孩&…...

Android Ble蓝牙App(七)扫描过滤
Ble蓝牙App(七)扫描过滤 前言目录正文一、增加菜单二、使用MMKV① 添加依赖② 封装MMKV③ 使用MMKV 三、过滤空设备名四、过滤Mac地址五、过滤RSSI六、源码 前言 在上一篇文章中了解了MTU的相关知识以及对于设备操作信息的展示,本篇文章中将增…...
小程序当前页面栈以及跳转
1.调用页面栈刷新接口 let pages getCurrentPages(); //当前页面栈 if (pages.length > 1) { let beforePage pages[pages.length - 2]; //获取上一个页面实例对象 beforePage.$vm.getActivityLi…...
jQuery获取表单的值val()
(1)页面中有很多元素,包括表单中的输入项,如输入文本框等;获取、设置、输入文本框的值;val()方法。 (2)也包括<p>、<span>等元素;获取、设置这些元素的文本…...

【专栏必读】数字图像处理(MATLAB+Python)专栏目录导航及学习说明
文章目录 第一章:绪论第二章:数字图像处理基础第三章:图像基本运算第四章:图像的正交变换第五章:图像增强第六章:图像平滑第七章:图像锐化第八章:图像复原第九章:图像形态…...

2023年非证券类投资银行业发展报告
第一章 行业概况 非证券投资银行业是一个专门为公司、政府和高净值个人提供金融服务的行业,与传统的证券投资银行不同,其主要业务不涉及证券交易,而是注重为客户提供咨询服务、融资和投资管理等服务。 非证券投资银行通常涉及的业务领域包括…...

Matlab 如何把频谱图的纵坐标设置为分贝刻度
Matlab 如何把频谱图的纵坐标设置为分贝刻度 Matlab代码如下: % 如何把频谱图的纵坐标设置为分贝刻度 % % pr2_2_6 clc; clear; close all;load pr2_2_6_sndata1.mat % 读入数据 X fft(y); % FFT n2 1:L/21; % 计算正频率…...
VUE写后台管理(2)
VUE写后台管理(2) 1.环境2.Element界面3.Vue-Router路由后台1.左导航栏2.上面导航条 1.环境 1.下载管理node版本的工具nvm(Node Version Manager) 2.安装node(vue工程的环境管理工具):nvm install 16.13.0 3.安装vue工…...
RHCSA8.2
Node1 配置您的系统以使用默认存储库 配置您 的系统以使用默认存储库YUM 存储库已可以从 http://foundation0.ilt.example.com/dvd/BaseOS 和 http://foundation0.ilt.example.com/dvd/AppStream 使用配置您的系统,以将这些位置用作默认存储库[rootclear ~]# cat …...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
安卓基础(aar)
重新设置java21的环境,临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的: MyApp/ ├── app/ …...

高考志愿填报管理系统---开发介绍
高考志愿填报管理系统是一款专为教育机构、学校和教师设计的学生信息管理和志愿填报辅助平台。系统基于Django框架开发,采用现代化的Web技术,为教育工作者提供高效、安全、便捷的学生管理解决方案。 ## 📋 系统概述 ### 🎯 系统定…...
拟合问题处理
在机器学习中,核心任务通常围绕模型训练和性能提升展开,但你提到的 “优化训练数据解决过拟合” 和 “提升泛化性能解决欠拟合” 需要结合更准确的概念进行梳理。以下是对机器学习核心任务的系统复习和修正: 一、机器学习的核心任务框架 机…...

ubuntu中安装conda的后遗症
缘由: 在编译rk3588的sdk时,遇到编译buildroot失败,提示如下: 提示缺失expect,但是实测相关工具是在的,如下显示: 然后查找借助各个ai工具,重新安装相关的工具,依然无解。 解决&am…...

未授权访问事件频发,我们应当如何应对?
在当下,数据已成为企业和组织的核心资产,是推动业务发展、决策制定以及创新的关键驱动力。然而,未授权访问这一隐匿的安全威胁,正如同高悬的达摩克利斯之剑,时刻威胁着数据的安全,一旦触发,便可…...
用 FFmpeg 实现 RTMP 推流直播
RTMP(Real-Time Messaging Protocol) 是直播行业中常用的传输协议。 一般来说,直播服务商会给你: ✅ 一个 RTMP 推流地址(你推视频上去) ✅ 一个 HLS 或 FLV 拉流地址(观众观看用)…...

使用python进行图像处理—图像变换(6)
图像变换是指改变图像的几何形状或空间位置的操作。常见的几何变换包括平移、旋转、缩放、剪切(shear)以及更复杂的仿射变换和透视变换。这些变换在图像配准、图像校正、创建特效等场景中非常有用。 6.1仿射变换(Affine Transformation) 仿射变换是一种…...