当前位置: 首页 > news >正文

机器学习和数据挖掘03-模型性能评估指标

Accuracy(准确率)

概念:模型正确预测的样本数量与总样本数量的比例。
公式:Accuracy = (TP + TN) / (TP + TN + FP + FN)

TP (True Positives):正确预测为正例的样本数。即模型正确地将正例判定为正例。

TN (True Negatives):正确预测为负例的样本数。即模型正确地将负例判定为负例。

FP (False Positives):错误预测为正例的样本数。即模型错误地将负例判定为正例。

FN (False Negatives):错误预测为负例的样本数。即模型错误地将正例判定为负例。

代码实现

from sklearn.metrics import accuracy_scorey_true = [0, 1, 1, 0, 1, 0]
y_pred = [0, 1, 0, 0, 1, 1]accuracy = accuracy_score(y_true, y_pred)
print("Accuracy:", accuracy)

Precision(精确度)

概念:被模型正确分类为正例的样本数量与所有被模型分类为正例的样本数量的比例。
公式:Precision = TP / (TP + FP)

代码实现

from sklearn.metrics import precision_scoreprecision = precision_score(y_true, y_pred)
print("Precision:", precision)

Recall(召回率)

概念:在所有实际正例中,模型正确识别的比例。
公式:Recall = TP / (TP + FN)

代码实现

from sklearn.metrics import recall_scorerecall = recall_score(y_true, y_pred)
print("Recall:", recall)

F1-Score

概念:综合了模型的精确度和召回率,是一个更全面的指标。
公式:F1 Score = 2 * (Precision * Recall) / (Precision + Recall)

代码实现

from sklearn.metrics import f1_scoref1 = f1_score(y_true, y_pred)
print("F1-Score:", f1)

Time Taken(花费时间)

这个指标通常不是用公式来计算的,而是通过代码中记录开始时间和结束时间,然后计算时间差来得出。

Root Mean-Squared Error (RMSE)(均方根误差)

概念:衡量模型预测值与真实值之间的平均差异。是均方误差的平方根。
公式:RMSE = sqrt(MSE)

from sklearn.metrics import mean_squared_error
import numpy as npy_true = np.array([3.0, 2.5, 4.8])
y_pred = np.array([2.8, 2.7, 4.5])mse = mean_squared_error(y_true, y_pred)
rmse = np.sqrt(mse)
print("RMSE:", rmse)

Mean Absolute Error (MAE)(平均绝对误差)

概念:衡量模型预测值与真实值之间的平均绝对差异。
公式:MAE = (|y_true - y_pred|) / n

from sklearn.metrics import mean_absolute_errormae = mean_absolute_error(y_true, y_pred)
print("MAE:", mae)

Log-loss/Cross-entropy loss(对数损失/交叉熵损失)

概念:衡量模型在预测概率时的准确性。适用于二分类问题的交叉熵损失为对数损失。
公式:Log-loss = - (y_true * log(y_pred) + (1 - y_true) * log(1 - y_pred))

代码实现

from sklearn.metrics import log_lossy_true = [0, 1, 1, 0]
y_pred = [0.2, 0.8, 0.7, 0.3]logloss = log_loss(y_true, y_pred)
print("Log-loss:", logloss)

相关文章:

机器学习和数据挖掘03-模型性能评估指标

Accuracy(准确率) 概念:模型正确预测的样本数量与总样本数量的比例。 公式:Accuracy (TP TN) / (TP TN FP FN) TP (True Positives):正确预测为正例的样本数。即模型正确地将正例判定为正例。 TN (True Negati…...

PageNumberPagination、LimitOffsetPagination、CursorPagination

数据 from django.db import modelsclass User(models.Model):username models.CharField(max_length64, verbose_name用户名)password models.CharField(max_length64, verbose_name密码)# 用户类型user_type models.IntegerField(choices((1, 菜鸟用户), (2, 普通用户), …...

怎么把视频转换成mp4格式

怎么把视频转换成mp4格式?如今,随着科技的不断发展,我们在工作中接触到的多媒体视频格式也越来越多。其中,MP4作为一种广泛兼容的视频格式,在许多软件中都能轻松播放,并且成为了剪辑与裁剪视频时大家常用的…...

正则判断字符是否包含手机号

字符前后不能是数字,满足手机号标准 String msg "19009098989";String mobliePattern "((?<!\\d))(mobile|手机号|)(|\\[|\\\":\\\"|:|&#xff1a;||:|)(1)([3-9]{1}\\d{1})(\\d{4})(\\d{4})(\\]|\\\"||)((?!\\d))";String mobileR…...

OSCP系列靶场-Esay-Sumo

OSCP系列靶场-Esay-Sumo 总结 getwebshell : nikto扫描 → 发现shellshock漏洞 → 漏洞利用 → getwebshell 提 权 思 路 : 内网信息收集 → 内核版本较老 →脏牛提权 准备工作 启动VPN 获取攻击机IP → 192.168.45.194 启动靶机 获取目标机器IP → 192.168.190.87 信息收…...

本地电脑搭建web服务器、个人博客网站并发布公网访问 【无公网IP】(1)

文章目录 前言1. 安装套件软件2. 创建网页运行环境 指定网页输出的端口号3. 让WordPress在所需环境中安装并运行 生成网页4. “装修”个人网站5. 将位于本地电脑上的网页发布到公共互联网上 前言 在现代社会&#xff0c;网络已经成为我们生活离不开的必需品&#xff0c;而纷繁…...

Python基础List列表定义与函数

如何定义一个非空的列表&#xff1f; name_list ["liming","xiaohong",15,{"hobby":"basketball"}] 列表的特点&#xff1a; 1.列表是有序的 2.可以存放多个元素 3.每个元素可以是任何数据类型 定义一个空列表 name_list [] 访…...

typeScript--[数据定义]

一.安装ts 1.命令行运行如下命令&#xff0c;全局安装 TypeScript&#xff1a; npm install -g typescript2.安装完成后&#xff0c;在控制台运行如下命令&#xff0c;检查安装是否成功 tsc -V 二.创建ts文件 1.创建一个day01.ts文件&#xff0c;随便在里面码一点代码&…...

【常见相机模型】

常见相机模型 enum class Type {kPinhole 0,kUnifiedProjection 1,kOmni 2, //optimize_on_spherekEqFisheye 3};其余类型optimize_on_plane这4种类型的相机模型具有以下差异&#xff1a; kPinhole (针孔相机模型)&#xff1a;这是最基本和常见的相机模型。它假设光线通过…...

大数据-玩转数据-Flink状态编程(上)

一、Flink状态编程 有状态的计算是流处理框架要实现的重要功能&#xff0c;因为稍复杂的流处理场景都需要记录状态&#xff0c;然后在新流入数据的基础上不断更新状态。 SparkStreaming在状态管理这块做的不好, 很多时候需要借助于外部存储(例如Redis)来手动管理状态, 增加了编…...

主动获取用户的ColaKey接口

主动获取用户的ColaKey接口 一、主动获取用户的ColaKey接口二、使用步骤1、接口***重要提示:建议使用https协议,当https协议无法使用时再尝试使用http协议***2、请求参数 三、 请求案例和demo1、请求参数例子&#xff08;POST请求&#xff0c;参数json格式&#xff09;2、响应返…...

C#写一个UDP程序判断延迟并运行在Centos上

服务端 using System.Net.Sockets; using System.Net;int serverPort 50001; Socket server; EndPoint client new IPEndPoint(IPAddress.Any, 0);//用来保存发送方的ip和端口号CreateSocket();void CreateSocket() {server new Socket(AddressFamily.InterNetwork, SocketT…...

Kafka核心原理第二弹——更新中

架构原理 一、高吞吐机制&#xff1a;Batch打包、缓冲区、acks 1. Kafka Producer怎么把消息发送给Broker集群的&#xff1f; 需要指定把消息发送到哪个topic去 首先需要选择一个topic的分区&#xff0c;默认是轮询来负载均衡&#xff0c;但是如果指定了一个分区key&#x…...

巨人互动|游戏出海H5游戏出海规模如何?

H5游戏出海是指将H5游戏推广和运营扩展到国外市场的行为&#xff0c;它的规模受到多个因素的影响。本文小编讲一些关于H5游戏出海规模的详细介绍。 1、市场规模 H5游戏出海的规模首先取决于目标市场的规模。不同国家和地区的游戏市场规模差异很大&#xff0c;有些市场庞大而成…...

【爬虫】实验项目三:验证码处理与识别

目录 一、实验目的 二、实验预习提示 三、实验内容 实验要求 基本要求&#xff1a; 改进要求A&#xff1a; 改进要求B&#xff1a; 四、实验过程 基本要求 五、源码如下 六、资料 一、实验目的 部分网站可能会使用验证机制来阻止用户无效登录或者是验证用户不是用程…...

广东成人高考报名将于9月14日开始!

截图来自广东省教育考试院官网* 今年的广东成人高考正式报名时间终于确定了&#xff01; 报名时间&#xff1a;2023年 9 月14—20日 准考证打印时间&#xff1a;考前一周左右 考试时间&#xff1a;2023年10月21—22日 录取时间&#xff1a;2023年12 月中上旬 报名条件: …...

pytorch中文文档学习笔记

先贴上链接 torch - PyTorch中文文档 首先我们需要安装拥有pytorch的环境 conda指令 虚拟环境的一些指令 查看所有虚拟环境 conda info -e 创建新的虚拟环境 conda create -n env_name python3.6 删除已有环境 conda env remove -n env_name 激活某个虚拟环境 activate env…...

element-ui全局导入与按需引入

全局引入 npm i element-ui -S 安装好depencencies里面可以看到安装的element-ui版本 然后 在 main.js 中写入以下内容&#xff1a; import Vue from vue; import ElementUI from element-ui; import element-ui/lib/theme-chalk/index.css; import App from ./App.vue;Vue.…...

go 地址 生成唯一索引v2 --chatGPT

问&#xff1a;golang 函数 getIndex(n,addr,Hlen,Tlen) 返回index。参数n为index的上限&#xff0c;addr为包含大小写字母数字的字符串,Hlen为截取addr头部的长度&#xff0c;Tlen为截取addr尾部的长度 gpt: 你可以编写一个函数来计算根据给定的参数 n、addr、Hlen 和 Tlen …...

JSON XML

JSON&#xff08;JavaScript Object Notation&#xff09;和XML&#xff08;eXtensible Markup Language&#xff09;是两种常用的数据交换格式&#xff0c;用于在不同系统之间传输和存储数据。 JSON是一种轻量级的数据交换格式&#xff0c;它使用易于理解的键值对的形式表示数…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例&#xff0c;也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下&#xff1a; 定义实例工厂类&#xff08;Java代码&#xff09;&#xff0c;定义实例工厂&#xff08;xml&#xff09;&#xff0c;定义调用实例工厂&#xff…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)

漏洞概览 漏洞名称&#xff1a;Apache Flink REST API 任意文件读取漏洞CVE编号&#xff1a;CVE-2020-17519CVSS评分&#xff1a;7.5影响版本&#xff1a;Apache Flink 1.11.0、1.11.1、1.11.2修复版本&#xff1a;≥ 1.11.3 或 ≥ 1.12.0漏洞类型&#xff1a;路径遍历&#x…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向&#xff0c;可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...

Web中间件--tomcat学习

Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机&#xff0c;它可以执行Java字节码。Java虚拟机是Java平台的一部分&#xff0c;Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用

一、方案背景​ 在现代生产与生活场景中&#xff0c;如工厂高危作业区、医院手术室、公共场景等&#xff0c;人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式&#xff0c;存在效率低、覆盖面不足、判断主观性强等问题&#xff0c;难以满足对人员打手机行为精…...

android13 app的触摸问题定位分析流程

一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...

【Linux】自动化构建-Make/Makefile

前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具&#xff1a;make/makfile 1.背景 在一个工程中源文件不计其数&#xff0c;其按类型、功能、模块分别放在若干个目录中&#xff0c;mak…...