当前位置: 首页 > news >正文

pytorch中文文档学习笔记

先贴上链接

torch - PyTorch中文文档

首先我们需要安装拥有pytorch的环境

conda指令

虚拟环境的一些指令
查看所有虚拟环境 conda info -e
创建新的虚拟环境 conda create -n env_name python=3.6
删除已有环境 conda env remove -n env_name
激活某个虚拟环境 activate env_name
退出某个虚拟环境 deactivate env_name
虚拟环境重命名 先克隆一个环境再把之前的环境删了
conda create --name newName(新环境名) --clone oldName(旧环境名)
conda remove --name oldName(旧环境名) --all

conda create -n pytorch_env python=3.10
conda activate pytorch_env
pip3 install torch torchvision 

1、torch

torch.is_tensor(obj) 
#如果obj 是一个pytorch张量,则返回Truea=numpy.array([1, 2, 3])
t=torch.from_numpy(a) 
# a(ndarray) → t(Tensor)
# 将numpy.ndarray 转换为pytorch的Tensor。返回的张量tensor和numpy的ndarray共享同一内存空间。# 修改一个会导致另外一个也被修改。返回的张量不能改变大小。t=torch.zeros(2, 3) #torch.zeros(*sizes, out=None) → Tensor
#返回一个全为0的张量,形状由可变参数sizes定义。t=torch.ones(2, 3) #torch.ones(*sizes, out=None) → Tensor
#返回一个全为1的张量,形状由可变参数sizes定义。t=torch.rand(2, 3) #torch.rand(*sizes, out=None) → Tensor
#返回一个张量,包含了从区间[0,1)的均匀分布中抽取的一组随机数,形状由可变参数sizes 定义。t=torch.randn(1, 5) #torch.randn(*sizes, out=None) → Tensor
#返回一个张量,包含了从标准正态分布(均值为0,方差为 1,即高斯白噪声)中抽取一组随机数
#形状由可变参数sizes定义。torch.numel(input) #返回input 张量中的元素个数
torch.eye(n, m=None, out=None) 
#返回一个2维张量,对角线位置全1,其它位置全0
# n (int ) – 行数/m (int, optional) – 列数.如果为None,则默认为n
# out (Tensor, optinal) - Output tensor/返回值: 对角线位置全1,其它位置全0的2维Tensor

2、torch.Tensor

 

相关文章:

pytorch中文文档学习笔记

先贴上链接 torch - PyTorch中文文档 首先我们需要安装拥有pytorch的环境 conda指令 虚拟环境的一些指令 查看所有虚拟环境 conda info -e 创建新的虚拟环境 conda create -n env_name python3.6 删除已有环境 conda env remove -n env_name 激活某个虚拟环境 activate env…...

element-ui全局导入与按需引入

全局引入 npm i element-ui -S 安装好depencencies里面可以看到安装的element-ui版本 然后 在 main.js 中写入以下内容: import Vue from vue; import ElementUI from element-ui; import element-ui/lib/theme-chalk/index.css; import App from ./App.vue;Vue.…...

go 地址 生成唯一索引v2 --chatGPT

问:golang 函数 getIndex(n,addr,Hlen,Tlen) 返回index。参数n为index的上限,addr为包含大小写字母数字的字符串,Hlen为截取addr头部的长度,Tlen为截取addr尾部的长度 gpt: 你可以编写一个函数来计算根据给定的参数 n、addr、Hlen 和 Tlen …...

JSON XML

JSON(JavaScript Object Notation)和XML(eXtensible Markup Language)是两种常用的数据交换格式,用于在不同系统之间传输和存储数据。 JSON是一种轻量级的数据交换格式,它使用易于理解的键值对的形式表示数…...

2023年MySQL实战核心技术第四篇

七 . 吃透索引:...

cmake编译(qtcreator)mingw下使用的osg3.6.5

官网下载osg3.6.5源码,先不使用依赖库,直接进行编译 如果generate后报错,显示找不到boost必须库,则手动增加路径。然后先在命令行中使用mingw32-make,如果显示不存在,则需要去环境变量里配置一下这个工具的…...

Python钢筋混凝土结构计算.pdf-混凝土强度设计值

计算原理: 需要注意的是,根据不同的规范和设计要求,上述公式可能会有所差异。因此,在进行混凝土强度设计值的计算时,请参考相应的规范和设计手册,以确保计算结果的准确性和合规性。 代码实现: …...

elasticsearch的索引库操作

索引库就类似数据库表,mapping映射就类似表的结构。我们要向es中存储数据,必须先创建“库”和“表”。 mapping映射属性 mapping是对索引库中文档的约束,常见的mapping属性包括: type:字段数据类型,常见的…...

把握市场潮流,溯源一流品质:在抖in新风潮 国货品牌驶过万重山

好原料、好设计、好品质、好服务……这个2023,“国货”二字再度成为服饰行业的发展关键词。以消费热潮为翼,越来越多代表性品类、头部品牌展现出独特价值,迎风而上,在抖音电商掀起一轮轮生意风潮。 一个设问是:在抖音…...

【网络教程】Python如何优雅的分割URL

文章目录 URL分割方法是一种用于解析URL字符串的方法,它可以将URL分解成不同的组成部分,如协议、域名、端口、路径等。在Python中,我们可以使用urllib.parse模块中的urlsplit方法来实现URL分割。 使用方法 下面是一个简单的示例代码,演示了如何使用urlsplit方法解析URL字符…...

1998-2014年工业企业数据库和绿色专利匹配

1998-2014年工业企业数据库绿色专利匹配 1、时间:1998-2014年 2、样本量:470万 3、来源:工业企业数据库、国家知识产权局、WIPO 4、指标: 企业匹配唯一标识码、组织机构代码、企业名称、年份、法定代表人、法定代表人职务、行…...

Python基于Mirai开发的QQ机器人保姆式教程(亲测可用)

在本教程中,我们将使用Python和Mirai来开发一个QQ机器人,本文提供了三个教学视频,包教包会,本文也很贴心贴了代码和相关文件。话不多说,直接开始教学。 目录 一、安装配置MIrai 图片验证码报错: 二、机器…...

算法笔记:堆

【如无特别说明,皆为最小二叉堆】 1 介绍 2 特性 结构性:符合完全二叉树的结构有序性:满足父节点小于子节点(最小化堆)或父节点大于子节点(最大化堆) 3 二叉堆的存储 顺序存储 二叉堆的有序…...

vue3 判断包含某个字符

<img v-if"node.level 1 && checkIfIncludeSubStr(node.label, 人口)"src"/assets/images/icon-convention-01.png" width"16"class"inlineBlock Vmiddle" style"margin-right: 8px;"/>const data reactive…...

MySQL的故事——查询性能优化

查询性能优化 文章目录 查询性能优化一、查询优化器的提示(hint)二、优化特定类型的查询 一、查询优化器的提示(hint) HIGH_PRIORITY和LOW_PRIORITY 这个提示告诉MySQL&#xff0c;当多个语句同时访问某一个表时&#xff0c;哪些语句的优先级相对高些&#xff0c;哪些相对低些…...

在外SSH远程连接macOS服务器【cpolar内网穿透】

文章目录 前言1. macOS打开远程登录2. 局域网内测试ssh远程3. 公网ssh远程连接macOS3.1 macOS安装配置cpolar3.2 获取ssh隧道公网地址3.3 测试公网ssh远程连接macOS 4. 配置公网固定TCP地址4.1 保留一个固定TCP端口地址4.2 配置固定TCP端口地址 5. 使用固定TCP端口地址ssh远程 …...

Nosql数据库服务之redis

Nosql数据库服务之redis 一图详解DB的分支产品 Nosql数据库介绍 是一种非关系型数据库服务&#xff0c;它能解决常规数据库的并发能力&#xff0c;比如传统的数据库的IO与性能的瓶颈&#xff0c;同样它是关系型数据库的一个补充&#xff0c;有着比较好的高效率与高性能。 专…...

当AI遇到IoT:开启智能生活的无限可能

文章目录 1. AI和IoT的融合1.1 什么是人工智能&#xff08;AI&#xff09;&#xff1f;1.2 什么是物联网&#xff08;IoT&#xff09;&#xff1f;1.3 AI和IoT的融合 2. 智能家居2.1 智能家居安全2.2 智能家居自动化 3. 医疗保健3.1 远程监护3.2 个性化医疗 4. 智能交通4.1 交通…...

Qt5界面Qt Designer上添加资源图片后,ModuleNotFoundError: No module named ‘rcc_rc‘ 的终极解决方案

在网上找了很久都没弄明白&#xff0c;最后还是自己思考解决了。 起因&#xff1a; 用 Qt Designer 添加资源文件作为背景图&#xff0c;编译 \resource\static\qrc> pyuic5 -o .\xx.py .\xx.ui发现在 xx.py 文件末尾中多了一个语句&#xff1a; import rcc_rc然后运行就…...

社群运营怎么做?

社区运营虽然说起来简单&#xff0c;可是实际执行起来却常常发现无从下手。刑天营销曾经做过社区运营的案子&#xff0c;我们也总结一套自己的方法&#xff0c;要做好社群运营&#xff0c;以下的这些问题就不能忽视&#xff1a; 一、做好社区定位 做社区运营&#xff0c;首先…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

HTML 列表、表格、表单

1 列表标签 作用&#xff1a;布局内容排列整齐的区域 列表分类&#xff1a;无序列表、有序列表、定义列表。 例如&#xff1a; 1.1 无序列表 标签&#xff1a;ul 嵌套 li&#xff0c;ul是无序列表&#xff0c;li是列表条目。 注意事项&#xff1a; ul 标签里面只能包裹 li…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

ElasticSearch搜索引擎之倒排索引及其底层算法

文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用

文章目录 一、背景知识&#xff1a;什么是 B-Tree 和 BTree&#xff1f; B-Tree&#xff08;平衡多路查找树&#xff09; BTree&#xff08;B-Tree 的变种&#xff09; 二、结构对比&#xff1a;一张图看懂 三、为什么 MySQL InnoDB 选择 BTree&#xff1f; 1. 范围查询更快 2…...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准

城市路内停车管理常因行道树遮挡、高位设备盲区等问题&#xff0c;导致车牌识别率低、逃费率高&#xff0c;传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法&#xff0c;正成为破局关键。该设备安装于车位侧方0.5-0.7米高度&#xff0c;直接规避树枝遮…...