优化案例5:视图目标列改写优化
优化案例5:视图目标列改写优化
- 1. 问题描述
- 2. 分析过程
- 2.1 目标SQL
- 2.2 解决思路
- 1)效率低的执行计划
- 2)视图过滤性
- 3)查看已有索引定义
- 2.3 视图改写
- 2.4 增添复合索引
- 3. 优化总结
DM技术交流QQ群:940124259
1. 问题描述
视图改写优化单独拿出一例分享,未做hint优化,简单地改写视图列和增加一个索引就能搞定。
这条SQL本身很简单,被广州同事使出三板斧(统计信息、索引、ET耗时、HINT、清理执行计划),招式使尽,却没去留意视图定义本身内容的特点,利用视图的谓词下推的策略,就能达到优化目的。
截图为同事部分一堆骚操作:

2. 分析过程
2.1 目标SQL
-- 原始SQL代码
SELECT * FROM (SELECT A., ROWNUM R FROM(SELECT COUNT(1) OVER () RECORDCOUNT, M. from DISPLAYCENTER.WL_DDBB_WEEK_V mwhere m.bbid='BB-DD-002' and bbrq='20221014'and hzb=45 and lzb=6 ) A where rownum <=1000)b where r>0; -- telphoning --4ms
-- 视图原始定义WL_DDBB_WEEK_V
CREATE OR REPLACE VIEW WL_DDBB_WEEK_V AS
SELECT t1.bbzd_id bbid, '' bbmc,
SUBSTR (t1.bbzd_date, 1, 4) || SUBSTR (t1.bbzd_date, 7, 2) || SUBSTR (t1.bbzd_date, 9, 2) AS bbrq,
t1.hzd_nm hzb, t1.lzd_nm lzb, dyzd_sj as VALUE
FROM (SELECT
T1.*
FROM RAW_SMES.Bb_Dwsj_Tb T1) t1 ;
2.2 解决思路
1)效率低的执行计划
/*
-- predicate condition
1 #NSET2: [6597, 1, 912]
2 #PRJT2: [6597, 1, 912]; exp_num(8), is_atom(FALSE)
3 #SLCT2: [6597, 1, 912]; B.R > var2
4 #PRJT2: [6597, 1, 912]; exp_num(8), is_atom(FALSE)
5 #RN: [6597, 1, 912]
6 #PRJT2: [6597, 1, 912]; exp_num(7), is_atom(FALSE)
7 #TOPN2: [6597, 1, 912]; top_num(exp11)
8 #AFUN: [6597, 1, 912]; afun_num(1); partition_num(0); order_num(0)
9 #PRJT2: [6597, 34, 912]; exp_num(6), is_atom(FALSE)
10 #SLCT2: [6597, 34, 912]; (exp_cast(T1.HZD_NM) = 45 AND exp_cast(T1.LZD_NM) = 6 AND exp11 || exp11 || exp11 = '20221014')
11 #BLKUP2: [6597, 2754812, 912]; IDX_BB_DWSJ(T1)
12 #SSEK2: [6597, 2754812, 912]; scan_type(ASC), IDX_BB_DWSJ(BB_DWSJ_TB as T1), scan_range[('BB-DD-002',min,min,min),('BB-DD-002',max,max,max))
*/
从执行计划步骤12 SSEK2和步骤10 SLCT2操作符的附加信息可以看出视图的过滤条件被下放。 但回表大严重(2754812行),由此可以推断这表很大,然而看着应用复合索引,只能命中一个字段定位,二次回表再过滤,不慢才怪。 所以影响此SQL的罪魁祸首是回表200+W的数据,造成大量的逻辑读和磁盘读。
2)视图过滤性
select count(*) from DISPLAYCENTER.WL_DDBB_WEEK_V ; -- 110 265 448 1亿1千万的数据行
select count(*) from DISPLAYCENTER.WL_DDBB_WEEK_V m where m.bbid='BB-DD-002' and m.bbrq='20221014'; -- 816 过滤性极强
select count(*) from DISPLAYCENTER.WL_DDBB_WEEK_V m where m.bbid='BB-DD-002' and hzb=45 and lzb=6 and bbrq='20221014'; -- 1
视图里面只有一个基表且数据量庞大,bbid和bbrq组合条件过滤性很强,对它们建个索引效果更好。
3)查看已有索引定义
/*
-- 表定义
CREATE TABLE "RAW_SMES"."BB_DWSJ_TB"
(
"QYZD_BH" VARCHAR2(40),
"DWZD_BH" VARCHAR2(30),
"BBZD_ID" VARCHAR2(20),
"BBZD_DATE" VARCHAR2(10),
"BBZD_YEAR" VARCHAR2(10),
"BBZD_MON" VARCHAR2(10),
"BBZD_DAY" VARCHAR2(10),
"BBZD_QUA" VARCHAR2(10),
"BBZD_TENDAY" VARCHAR2(10),
"BBZD_WEEK" VARCHAR2(10),
"HZD_ZB" NUMBER,
"LZD_ZB" NUMBER,
"H_BZBM" VARCHAR2(30),
"L_BZBM" VARCHAR2(30),
"DYZD_SJ" VARCHAR2(500),
"DYZD_DATA" NUMBER(20,6),
"XSSX" NUMBER,
"HZD_NM" VARCHAR2(50),
"LZD_NM" VARCHAR2(50),
"INSERT_ODS_TIME" TIMESTAMP(0),
"UPDATE_ODS_TIME" TIMESTAMP(0),
"M_ROW$$" VARCHAR2(128)) STORAGE(ON "RAW_SCGK", CLUSTERBTR) ;-- 索引定义
CREATE UNIQUE INDEX "UK_M_ROW" ON "RAW_SMES"."BB_DWSJ_TB"("M_ROW$$" ASC) STORAGE(ON "RAW_SCGK", CLUSTERBTR) ;
CREATE INDEX "IDX_BB_DWSJ" ON "RAW_SMES"."BB_DWSJ_TB"("BBZD_ID" ASC,"BBZD_DATE" ASC,"HZD_NM" ASC,"LZD_NM" ASC) STORAGE(ON "RAW_SCGK", CLUSTERBTR) ;
*/
看到索引定义("BBZD_ID" ASC,"BBZD_DATE" ASC,"HZD_NM" ASC,"LZD_NM" ASC) 时,知道他们离优化成功半步之遥,不懂BBZD_DATE字段被视图转换拼接, 已不再是原始字段,所以这个索引无法利用上第2个字段,则解释清楚1)所说的执行计划涉及的回表严重。
2.3 视图改写
原始视图的bbrq视图列定义SUBSTR (t1.bbzd_date, 1, 4) || SUBSTR (t1.bbzd_date, 7, 2) || SUBSTR (t1.bbzd_date, 9, 2) AS bbrq, 写得太复杂,无非就是从字符类型的bbzd_date截取出合法的日期格式数据,把一大趾函数转换简单化,变成stuff函数,减少复杂计算, 还能让后面建函数索引更简单方便。-- redefination view reduce function cost
CREATE OR REPLACE VIEW DISPLAYCENTER.WL_DDBB_WEEK_V
AS
SELECT
t1.bbzd_id bbid,
'' bbmc ,
stuff(t1.bbzd_date, 5, 2, '') AS bbrq, -- 改写位置
t1.hzd_nm hzb ,
t1.lzd_nm lzb ,
dyzd_sj as VALUE
FROM
(
SELECT T1.* FROM RAW_SMES.Bb_Dwsj_Tb T1
)
t1 ;
2.4 增添复合索引
create index idx_comb_bbid_hzb_lzb on “RAW_SMES”.“BB_DWSJ_TB”(BBZD_ID, STUFF(bbzd_date, 5, 2, ‘’), HZD_NM,LZD_NM ) ONLINE;
将就原来他们建的索引IDX_BB_DWSJ的逻辑,把第2个字段替换成stuff函数。再来一探执行计划的变化,不出意外的话,将会充分利用上索引前两个字段的过滤性。
/* 执行时间:4毫秒
1 #NSET2: [163, 1, 912]
2 #PRJT2: [163, 1, 912]; exp_num(8), is_atom(FALSE)
3 #SLCT2: [163, 1, 912]; B.R > var2
4 #PRJT2: [163, 1, 912]; exp_num(8), is_atom(FALSE)
5 #RN: [163, 1, 912]
6 #PRJT2: [163, 1, 912]; exp_num(7), is_atom(FALSE)
7 #TOPN2: [163, 1, 912]; top_num(exp11)
8 #AFUN: [163, 1, 912]; afun_num(1); partition_num(0); order_num(0)
9 #PRJT2: [163, 68469, 912]; exp_num(6), is_atom(FALSE)
10 #SLCT2: [163, 68469, 912]; (exp_cast(T1.HZD_NM) = 45 AND exp_cast(T1.LZD_NM) = 6)
11 #BLKUP2: [163, 68469, 912]; IDX_COMB_BBID_HZB_LZB(T1)
12 #SSEK2: [163, 68469, 912]; scan_type(ASC), IDX_COMB_BBID_HZB_LZB(BB_DWSJ_TB as T1), scan_range[('BB-DD-002','20221014',min,min),('BB-DD-002','20221014',max,max))
*/
执行计划BLKUP2 显示回表68469,索引统计信息未收集,收集一下就成。 总体来说,优化已经达到预期目标,4毫秒已经很nice。可能美中不足复合索引剩下两字段没用上,跑到SLCT2作回表过滤。 细心地会发现(exp_cast(T1.HZD_NM) = 45 AND exp_cast(T1.LZD_NM) = 6) 出现exp_cast数据库内部隐式转换,所以才漏掉。 喊他们把条件数字带上单引号【hzb='45' and lzb='6'】,避免类型转换,也就解决索引全列过滤。
3. 优化总结
懂得索引合理创建,不要乱建索引,复合索引的组合字段弄得太多不是好事,因为能利用上的索引键就一个或两个,完全没意义弄这么多索引键,潜在隐藏一个信息,索引体积太大,索引B+树庞大,可能引起大量的IO读写,影响索引扫描的效率。
一定要充分利用索引特性,够小(体积小,可以理解为表的瘦身版),够高效(过滤性强)。
明白视图的优化手段,无非包含视图上拉、视图合并等等优化思想。
相关文章:
优化案例5:视图目标列改写优化
优化案例5:视图目标列改写优化 1. 问题描述2. 分析过程2.1 目标SQL2.2 解决思路1)效率低的执行计划2)视图过滤性3)查看已有索引定义 2.3 视图改写2.4 增添复合索引 3. 优化总结 DM技术交流QQ群:940124259 1. 问题描述…...
Origin绘制彩色光谱图
成果图 1、双击线条打开如下窗口 2、选择“图案”-》颜色-》按点-》映射-》Wavelength 3、选择颜色映射 4、单击填充-》选择加载调色板-》Rainbow-》确定 5、单击级别,设置成从370到780,右侧增量选择2(越小,颜色渐变越细腻&am…...
项目复盘:从实践中学习
引言 在我们的工作生涯中,每一个项目都是一次学习的机会。项目复盘是对已完成项目的全面评估,旨在理解我们做得好的地方,以及需要改进的地方。这篇文章将分享我们如何进行项目复盘,以及我们从中学到了什么。 项目背景 在我们开…...
机器学习和数据挖掘02-Gaussian Naive Bayes
概念 贝叶斯定理: 贝叶斯定理是概率中的基本定理,描述了如何根据更多证据或信息更新假设的概率。在分类的上下文中,它用于计算给定特征集的类别的后验概率。 特征独立性假设: 高斯朴素贝叶斯中的“朴素”假设是,给定…...
【面试题精讲】Java Stream排序的实现方式
首发博客地址 系列文章地址 如何使用Java Stream进行排序 在Java中,使用Stream进行排序可以通过sorted()方法来实现。sorted()方法用于对Stream中的元素进行排序操作。具体实现如下: 对基本类型元素的排序: 使用sorted()方法对Stream进行排序…...
浅谈Spring
Spring是一个轻量级的控制反转(IoC)和面向切面(AOP)的容器(框架)。 一、什么是IOC? IoC Inversion of Control 翻译成中⽂是“控制反转”的意思,也就是说 Spring 是⼀个“控制反转”的容器。 1.1控制反转推导 这个控制反转怎…...
Java 复习笔记 - 面向对象进阶篇
文章目录 一,Static(一)Static的概述(二)静态变量(三)静态方法(四)工具类(五)static的注意事项 二,继承(一)继…...
微信小程序中识别html标签的方法
rich-text组件 在微信小程序中有一个组件rich-text可以识别文本节点或是元素节点 具体入下: //需要识别的数据放在data中,然后放在nodes属性中即可 <rich-text nodes"{{data}}"></rich-text>详情可以参考官方文档:https://developers.weixin.qq.com/mi…...
02_常见网络层协议的头结构
1.ARP报文的报文结构 ARP首部的5个字段的含义: 硬件类型:值为1表示以太网MAC地址。 协议类型:表示要映射的协议地址类型,0x0800 表示映射为IP地址。 硬件地址长度:在以太网ARP的请求和应答中都是6,表示M…...
ChatGLM学习
GLM paper:https://arxiv.org/pdf/2103.10360.pdfchatglm 130B:https://arxiv.org/pdf/2210.02414.pdf 前置知识补充 双流自注意力 Two-stream self-attention mechanism(双流自注意机制)是一种用于自然语言处理任务的注意力机制…...
Flink之Watermark
1.乱序问题 流处理从事件产生,到流经source,再到operator,中间是有一个过程和时间的,虽然大部分情况下,流到operator的数据都是按照事件产生的时间顺序来的,但是也不排除由于网络、分布式等原因࿰…...
二轮平衡小车3:PID速度环
使用芯片:STM32 F103 C8T6 今日继续我的二路平衡小车开发之路,今日编写的是二轮平衡小车的PID速度环,我准备了纸飞机串口助手软件来辅助测试调节PID。 本文主要贴代码,之前的文章都有原理,代码中相应初始化驱动部分也…...
C语言之练习题
欢迎来到我的世界 希望这篇文章对你有所帮助,有不足的地方还请指正,大家一起学习交流 ! 目录 前言编程题第一题:珠玑妙算第二题:寻找奇数第三题:寻找峰值第四题:数对 总结 前言 这是暑假题目的收尾文章&am…...
没钱,没人,没经验?传统制造型企业如何用无代码实现转型
2023年,国家市场监督管理总局发布了三项重要标准,包括《工业互联网平台选型要求》、《工业互联网平台微服务参考框架》和《工业互联网平台开放应用编程接口功能要求》。这些标准的发布对于完善工业互联网平台标准体系,提升多样化工业互联网平…...
CentOS ARM 部署 kubernetes v1.24.6
1.背景 之前安装的kubernetes版本为v1.19.0 树莓派使用(CentOS7.9 armv71 Kubernetes1.19.0), 由于版本过低,一些HPA相关的功能支持不是特别好,因此需要将版本升级,本次会将版本升级为v1.24.6. 2. 如何upgrade 2.1. 优雅升级 kubeadm自带…...
LeetCode 725. Split Linked List in Parts【链表】中等
本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章…...
云计算中的负载均衡技术,确保资源的平衡分配
文章目录 1. 硬件负载均衡器2. 软件负载均衡器3. DNS负载均衡4. 内容分发网络(CDN) 🎈个人主页:程序员 小侯 🎐CSDN新晋作者 🎉欢迎 👍点赞✍评论⭐收藏 ✨收录专栏:云计算 ✨文章内…...
探索 SOCKS5 代理在跨境电商中的网络安全应用
随着全球化的发展,跨境电商成为了商业界的一颗新星,为企业提供了无限的发展机遇。然而,随之而来的是网络安全的挑战,特别是在处理国际网络流量时。在这篇文章中,我们将探讨如何利用 SOCKS5 代理和代理 IP 技术来加强跨…...
全网独家:编译CentOS6.10系统的openssl-1.1.1多版本并存的rpm安装包
CentOS6.10系统原生的openssl版本太老,1.0.1e,不能满足一些新版本应用软件的要求,但是它又被wget、mysql-libs、python-2.6.6、yum等一众系统包所依赖,不能再做升级。故需考虑在不影响系统原生openssl的情况下,安装较新…...
【go】异步任务解决方案Asynq实战
文章目录 一.Asynq介绍二.所需工具三.代码示例四.Reference 一.Asynq介绍 Asynq 是一个 Go 库,一个高效的分布式任务队列。 Asynq 工作原理: 客户端(生产者)将任务放入队列服务器(消费者)从队列中拉出任…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
【C语言练习】080. 使用C语言实现简单的数据库操作
080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...
CSS | transition 和 transform的用处和区别
省流总结: transform用于变换/变形,transition是动画控制器 transform 用来对元素进行变形,常见的操作如下,它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...
关于easyexcel动态下拉选问题处理
前些日子突然碰到一个问题,说是客户的导入文件模版想支持部分导入内容的下拉选,于是我就找了easyexcel官网寻找解决方案,并没有找到合适的方案,没办法只能自己动手并分享出来,针对Java生成Excel下拉菜单时因选项过多导…...
破解路内监管盲区:免布线低位视频桩重塑停车管理新标准
城市路内停车管理常因行道树遮挡、高位设备盲区等问题,导致车牌识别率低、逃费率高,传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法,正成为破局关键。该设备安装于车位侧方0.5-0.7米高度,直接规避树枝遮…...
【大模型】RankRAG:基于大模型的上下文排序与检索增强生成的统一框架
文章目录 A 论文出处B 背景B.1 背景介绍B.2 问题提出B.3 创新点 C 模型结构C.1 指令微调阶段C.2 排名与生成的总和指令微调阶段C.3 RankRAG推理:检索-重排-生成 D 实验设计E 个人总结 A 论文出处 论文题目:RankRAG:Unifying Context Ranking…...
用js实现常见排序算法
以下是几种常见排序算法的 JS实现,包括选择排序、冒泡排序、插入排序、快速排序和归并排序,以及每种算法的特点和复杂度分析 1. 选择排序(Selection Sort) 核心思想:每次从未排序部分选择最小元素,与未排…...
