当前位置: 首页 > news >正文

TuyaOS Sensor Hub组件介绍

文章目录

    • Sensor Hub 设计思想
      • 分层设计
        • Sensor Hub 层(tdl)
        • Sensor Driver 层(tdd)
      • 传感数据元素类型抽象
      • 传感器采集策略
    • Sensor Hub 对上数据与接口
      • 数据结构
        • 1. 数据读取的触发模式
        • 2. 元素型数据订阅规则
        • 3. 数据就绪通知回调
        • 4. 传感设备信息
      • 应用接口
        • 1. 创建传感器实例
        • 2. 启动传感器
        • 3. 停止传感器
        • 4. 配置传感器参数
        • 5. 读取传感器实时数据
    • Sensor Hub 对下数据与接口
      • 数据结构
      • 驱动接口抽象
      • 驱动注册接口
    • 驱动开发流程
    • Sensor Hub使用流程

Sensor Hub 是 TuyaOS 传感器管理组件,可以实现对传感器设备的硬件抽象,设备管理和数据处理。基于 sensor_hub 开发传感器应用时,开发者无需关注传感器的传输协议,只需要对传感器挂载硬件接口、工作方式、采集间隔等进行配置,然后在事件回调中读取传感器处理即可。

通过 Sensor Hub 管理传感器,可快速新增、切换新的传感器,而无需修改上层应用程序。

开发者可使用 tuyaos_sensor_hub_demo_quickstart 体验 Sensor Hub 组件,将多种传感器设备加入到智能设备中,实现更多设备智能化。

在这里插入图片描述

Sensor Hub 设计思想

分层设计

Sensor Hub 组件采用软硬件分层设计,分为 sensor hub 逻辑实现层、sensor driver 驱动层,可在驱动层添加新驱动实现新传感器快速接入。

Sensor Hub 层(tdl)

主要功能:

  1. 对应用提供统一的传感交互接口
  2. 对传感驱动提供统一的适配接口
  3. 给应用提供多种比较通用的采集策略

Sensor Driver 层(tdd)

主要功能:

  1. 传感器实例化
  2. 对应用提供挂载到 Sensor Hub 上的注册接口

传感数据元素类型抽象

传感上报的数据类型由 Sensor Driver 层配置,即由传感器实例决定。

  1. 元素型

传感器采集的某一类数据可以根据其物理含义抽象为一种元素 (element),复合型传感则包含多种元素,如温湿度传感器就包含了 2 种元素:温度、湿度。一组数据中包含了 几种元素、各元素名称 (ID)、各元素值的数据类型 均由 Sensor Driver 层配置。

元素值的数据类型可分为整型、浮点型。

  1. 透传型
    传感数据存储的具体格式由 Sensor Driver 层配置,以二进制形式存储。

传感器采集策略

目前 Sensor Hub 支持以下采集策略配置:

  1. 数据读取的触发模式
  • 软定时轮询
  • 硬件定时轮询
  • IO中断
  1. 传感数据组缓存 fifo 深度

  2. 数据订阅模式

  • 元素组(每次返回都是所有元素数据)
  • 单元素(每次返回仅一种元素数据)
  1. 数据订阅规则设定
  • 数据组数
  • 过滤规则(最大值/最小值/步进值)

Sensor Hub 对上数据与接口

数据结构

1. 数据读取的触发模式

/*** @brief 采集触发模式*/
typedef BYTE_T SR_TRIG_MODE_E;
#define SR_MODE_POLL_SOFT_TM	0		// 轮询(软件定时)
#define SR_MODE_POLL_HARD_TM    1   	// 轮询(硬件定时)
#define SR_MODE_EXTI            2   	// 外部中断(GPIO)/*** @brief 工作模式配置*/
typedef struct {SR_TRIG_MODE_E	trig_mode;			// 采集触发方式UINT_T    		poll_intv_ms;   	// 轮询方式:采集间隔(ms)TUYA_GPIO_NUM_E	irq_pin;        	// 中断方式:中断引脚TUYA_GPIO_IRQ_E irq_mode;       	// 中断方式:中断模式
} SR_WORK_MODE_T;

2. 元素型数据订阅规则

/*** @brief 元素型数据订阅类型*/
typedef BYTE_T SR_ELE_SUB_TP_E;
#define SR_ELE_SUB_TP_GROUP		0		// 以组的形式上报应用订阅的所有元素的数据
#define SR_ELE_SUB_TP_SINGLE   	1   	// 一一上报应用订阅的每个元素的数据/*** @brief 过滤规则*/
typedef union {struct {INT_T	max;					// 最大值INT_T	min;					// 最小值UINT_T	step;   				// 步进值(非0:前后变化低于该值的会被过滤)} i;	// 整型struct {FLOAT_T	max;					// 最大值FLOAT_T min;					// 最小值FLOAT_T	step;					// 步进值(非0:前后变化低于该值的会被过滤)} f;	// 浮点型
} SR_FILTETR_U;/*** @brief 元素型数据订阅规则* @note val_num仅在订阅类型为SR_ELE_SUB_TP_SINGLE时有效,且其值不能超过fifo_size*/
typedef struct {UCHAR_T			id;					// 元素IDUCHAR_T   		val_num;			// 每次订阅的元素值个数SR_FILTETR_U    filter;     		// 过滤规则
} SR_ELE_SUB_RULE_T;/*** @brief 元素型数据订阅配置*        拓展功能 (可选)*/
typedef struct {SR_ELE_SUB_TP_E     tp;				// 元素型数据订阅方式UCHAR_T             num;    		// 元素订阅数量,也是元素型数据订阅规则数量SR_ELE_SUB_RULE_T  *rule;   		// 元素型数据订阅规则
} SR_ELE_SUB_CFG_T;

3. 数据就绪通知回调

/*** @brief 元素型数据缓存结构*/
typedef struct {UCHAR_T			id;					// 元素IDSR_VAL_TP_E   	val_tp;     		// 元素值类型UCHAR_T   		val_num;			// 元素值个数SR_VAL_U       *val;				// 元素值(存储地址)
} SR_ELE_BUFF_T;/*** @brief 数据就绪通知回调*/
typedef VOID_T (*SR_ELE_INFORM_CB)(CHAR_T* name, UCHAR_T buf_num, SR_ELE_BUFF_T *ele_data);
typedef VOID_T (*SR_RAW_INFORM_CB)(CHAR_T* name, UINT_T raw_num, SR_RAW_DATA_T *raw_data);
typedef union {SR_ELE_INFORM_CB    ele;			// 用于元素型数据SR_RAW_INFORM_CB    raw;    		// 用于透传型数据
} SR_INFORM_CB_T;

4. 传感设备信息

/*** @brief 传感设备注册信息*/
typedef struct {SR_WORK_MODE_T		mode;			// 数据采集模式SR_INFORM_CB_T      inform_cb;  	// 数据就绪通知回调UCHAR_T             fifo_size;  	// 存放返回给app数据的缓存大小SR_ELE_SUB_CFG_T   *ele_sub;    	// 元素型数据订阅模型配置(不使用则写NULL)
} SR_DEV_CFG_T;/*** @brief 传感设备句柄*/
typedef VOID_T* SENSOR_HANDLE_T;

应用接口

1. 创建传感器实例

/*** @brief 查找传感设备* @param[in] dev_name: 传感设备名称* @param[out] handle: 传感设备句柄* @return 操作结果*/
OPERATE_RET tdl_sensor_dev_find(CHAR_T *dev_name, SENSOR_HANDLE_T* handle);

2. 启动传感器

/*** @brief 启动传感设备* @param[in] handle: 传感设备句柄* @param[in] config: 设备配置参数* @return 操作结果*/
OPERATE_RET tdl_sensor_dev_open(SENSOR_HANDLE_T handle, SR_DEV_CFG_T* config);

3. 停止传感器

/*** @brief 启动传感设备* @param[in] handle: 传感设备句柄* @return 操作结果*/
OPERATE_RET tdl_sensor_dev_close(SENSOR_HANDLE_T handle);

4. 配置传感器参数

/*** @brief 配置传感设备* @param[in] handle: 传感设备句柄* @param[in] cmd: 配置命令* @param[in] param: 配置命令参数* @return 操作结果*/
OPERATE_RET tdl_sensor_dev_config(SENSOR_HANDLE_T handle, UCHAR_T cmd, VOID_T *param);

5. 读取传感器实时数据

/*** @brief 读取传感实时数据* @param[in] handle: 设备句柄* @param[in] ele_num: 元素个数,0表示透传型* @param[inout] ele_data: 元素型数据,不使用时写NULL* @param[out] raw_data: 透传型数据,不使用时写NULL* @return 操作结果*/
OPERATE_RET tdl_sensor_dev_read(IN SENSOR_HANDLE_T handle, IN UCHAR_T ele_num,INOUT SR_ELE_DATA_T *ele_data, OUT SR_RAW_DATA_T *raw_data);

Sensor Hub 对下数据与接口

数据结构

  1. 元素数据类型配置
/*** @brief 元素数据类型配置*/
typedef struct {UCHAR_T		id;						// 元素IDSR_VAL_TP_E	val_tp;					// 元素值类型
} SR_ELE_CFG_T;
  1. 驱动依赖资源信息
/*** @brief 资源信息*/
typedef struct {UCHAR_T		type;					// 资源类型(I2C/SPI/...)UCHAR_T     port;					// 资源端口VOID_T*     handle;   				// 资源句柄(暂时没有用到)UCHAR_T     info[SR_RSRC_INFO_LEN];	// 其他资源信息
} SR_RSRC_T;

驱动接口抽象

/*** @brief 驱动接口抽象*/
typedef struct {OPERATE_RET (*open)(SR_RSRC_T* dev);OPERATE_RET (*close)(SR_RSRC_T* dev);OPERATE_RET (*control)(SR_RSRC_T* dev, UCHAR_T cmd, VOID_T *param);OPERATE_RET (*read_ele)(SR_RSRC_T* dev, SR_ELE_DATA_T *ele_data, UCHAR_T ele_num); OPERATE_RET (*read_raw)(SR_RSRC_T* dev, SR_RAW_DATA_T *raw_data); 
} SR_INTFS_T;

驱动注册接口

/*** @brief 注册传感设备* @param[in] dev_name: 传感设备名称* @param[in] intfs: 传感设备操作接口(内存由具体的传感器分配)* @param[in] ele_num: 传感数据元素个数,0表示采用透传型(内存由具体的传感器分配)* @param[in] ele_cfg: 每个元素的数据类型配置* @param[in] resource: 传感设备依赖的资源信息* @return 操作结果*/
OPERATE_RET tdl_sensor_register(CHAR_T *dev_name, SR_INTFS_T *intfs, UCHAR_T ele_num, \SR_ELE_CFG_T *ele_cfg, SR_RSRC_T *resource);

驱动开发流程

  1. 确定传感数据存储方式,如果选择元素型,则需确定有哪些 元素 及每个元素值的 数据类型
  2. 确定传感驱动的 外设 类型和需要配置的内容,比如 I2C、SPI …;
  3. 确定注册设备时需要做哪些处理,有哪些 资源信息 需要暂存至 SensorHub,实现 tdd_sensor_xxx_register 接口;(传感的通用初始化可以在注册时进行,或者使用控制命令进行,即由用户决定何时初始化)
  4. 确定传感是否有启动测量和停止测量命令,实现 openclose 接口;
  5. 确定传感读数据的过程,实现 read_eleread_raw 接口;
  6. 确定除读数据外是否需要增加其他的配置命令,实现 control 接口。

Sensor Hub使用流程

  1. 调用 tdd_sensor_xxx_register 注册 xxx 设备。
  2. 调用 tdl_sensor_dev_find 查找 xxx 设备,获得设备句柄(确认 xxx 设备是否注册成功)。
  3. 调用 tdl_sensor_dev_config 配置 xxx 设备(启动前的一些必要配置;启动后也可通过调用该接口控制设备)。
  4. 调用 tdl_sensor_dev_open 启动 xxx 设备(在需要启动时调用),同时需要编写数据通知回调函数。
  5. 调用 tdl_sensor_dev_read 读取 xxx 设备的实时数据(有需要时)。
  6. 调用 tdl_sensor_dev_close 停止 xxx 设备(在需要停止时调用)。

相关文章:

TuyaOS Sensor Hub组件介绍

文章目录 Sensor Hub 设计思想分层设计Sensor Hub 层(tdl)Sensor Driver 层(tdd) 传感数据元素类型抽象传感器采集策略 Sensor Hub 对上数据与接口数据结构1. 数据读取的触发模式2. 元素型数据订阅规则3. 数据就绪通知回调4. 传感设备信息 应用接口1. 创建传感器实例2. 启动传感…...

【实战】React17+React Hook+TS4 最佳实践,仿 Jira 企业级项目(总结展望篇)

文章目录 一、项目起航:项目初始化与配置二、React 与 Hook 应用:实现项目列表三、TS 应用:JS神助攻 - 强类型四、JWT、用户认证与异步请求五、CSS 其实很简单 - 用 CSS-in-JS 添加样式六、用户体验优化 - 加载中和错误状态处理七、Hook&…...

Leetcode.321 拼接最大数

题目链接 Leetcode.321 拼接最大数 hard 题目描述 给定长度分别为 m m m 和 n n n 的两个数组,其元素由 0 ∼ 9 0 \sim 9 0∼9 构成,表示两个自然数各位上的数字。现在从这两个数组中选出 k k k ( k ≤ m n ) (k \leq m n) (k≤mn) 个数字拼接成…...

数学建模竞赛常用代码总结-PythonMatlab

数学建模过程中有许多可复用的基础代码,在此对 python 以及 MATLAB 中常用代码进行简单总结,该总结会进行实时更新。 一、文件读取 python (pandas) 文件后缀名(扩展名)并不是必须的,其作用主要一方面是提示系统是用…...

在Ubuntu上安装CUDA和cuDNN以及验证安装步骤

在Ubuntu上安装CUDA和cuDNN以及验证安装步骤 本教程详细介绍了如何在Ubuntu操作系统上安装CUDA(NVIDIA的并行计算平台)和cuDNN(深度神经网络库),以及如何验证安装是否成功。通过按照这些步骤操作,您将能够…...

SecureCRT ssh链接服务器

SecureCRT通过密钥进行SSH登录 说明: 一般的密码方式登录容易被密码暴力破解。所以一般我们会将 SSH 的端口设置为默认22以外的端口,或者禁用root账户登录。其实可以通过密钥登录这种方式来更好地保证安全。 密钥形式登录的原理是:利用密钥…...

linux之perf(3)top实时性能

Linux之perf(3)top实时性能 Author:Onceday Date:2023年9月3日 漫漫长路,才刚刚开始… 注:该文档内容采用了GPT4.0生成的回答,部分文本准确率可能存在问题。 参考文档: Tutorial - Perf Wiki (kernel.org)perf-to…...

【linux命令讲解大全】076.pgrep命令:查找和列出符合条件的进程ID

文章目录 pgrep补充说明语法选项参数实例 从零学 python pgrep 根据用户给出的信息在当前运行进程中查找并列出符合条件的进程ID(PID) 补充说明 pgrep 命令以名称为依据从运行进程队列中查找进程,并显示查找到的进程ID。每一个进程ID以一个…...

微信小程序开发---条件渲染和列表渲染

目录 一、条件渲染 (1)基本使用 (2)block (3)hidden 二、列表渲染 (1)基本使用 (2)手动指定索引和当前项的变量名 (3)wx:key的…...

【ES6】require、export和import的用法

在JavaScript中,require、export和import是Node.js的模块系统中的关键字,用于处理模块间的依赖关系。 1、require:这是Node.js中引入模块的方法。当你需要使用其他模块提供的功能时,可以使用require关键字来引入该模块。例如&…...

Vue + Element UI 前端篇(九):接口格式定义

接口请求格式定义 前台显示需要后台数据,我们这里先把前后端交互接口定义好,没有后台的时候,也方便用mock模拟。 接口定义遵循几个规范: 1. 接口按功能模块划分。 系统登录:登录相关接口 用户管理:用户…...

部署Django报错-requires SQLite 3.8.3 or higher

记一次CentOS7部署Django项目时的报错 问题出现 在部署测试环境时,有需要用到一个python的后端服务,要部署到测试环境中去 心想这不是so easy吗,把本地调试时使用的python版本及Django版本在服务器上对应下载好,然后直接执行命…...

什么是网络存储服务器

网络存储器就像一台只有存储功能的终端,独立地工作,里面带有固定的系统,但可以自己设置部分参数功能,可以接入服务器或者电脑进行设置,网络存储服务器实际上就是精简的、小型化的服务器,同样由主板、CPU&am…...

lv3 嵌入式开发-10 NFS服务器搭建及使用

目录 1 NFS服务器介绍 1.1 NFS服务器的介绍 1.2 NFS服务器的特点 1.3 NFS服务器的适用场景 2 NFS服务器搭建 2.1 配置介绍 2.2 常见错误 3 WINDOWS下NFS服务器搭建(扩展) 1 NFS服务器介绍 1.1 NFS服务器的介绍 nfs(Network File Sys…...

后流量时代的跨境风口:Facebook广告

Facebook拥有超过25亿各个年龄段和人群的每月活跃用户,可以帮助您接触世界各地的相关消费者。无论您是需要吸引新的潜在客户还是吸引回头客访问您的在线商店,Facebook广告都可以为电子商务提供丰厚的投资回报;无论您是在沃尔玛、eBay、亚马逊…...

Java基础学习笔记-2

前言 在计算机编程领域,条件语句和控制流结构是构建程序逻辑的基本组成部分。它们允许程序员根据不同的条件执行不同的操作,从而使程序更加灵活和智能。本文将深入探讨Java编程语言中的条件语句和控制流,提供了一系列实用的示例和技巧&#…...

Mongodb 安装脚本(附服务器自启动)

shell脚本 #!/bin/bash #mail:xuelanchnet.com #function:auto install mongodb [ $(id -u) ! "0" ] && echo "Error: You must be root to run this script" && exit 1 logfile"/var/log/mongod_install.log" softdir"/s…...

yolov5的pytorch配置

1. conda create -n rdd38 python3.82、pip install torch1.8.0 torchvision0.9.0 torchaudio0.8.0 -f https://download.pytorch.org/whl/cu113/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple 3、conda install cudatoolkit10.2...

ISO 19712-1-2008装饰用实体面材检测

实体面材是指由聚合物材料、填料和颜料组成,经浇筑或压制等工艺成型的板型产品或非板型产品,主要用于厨房台面,家具等领域。 ISO 19712-1-2008装饰用实体面材测试 测试项目 测试标准 耐干热 ISO 19712-3 ISO 19712-2 耐湿热 ISO 19712-…...

华为OD机试 - 最多颜色的车辆 - 数据结构map(Java 2022Q4 100分)

目录 专栏导读一、题目描述二、输入描述三、输出描述四、解题思路1、核心思想2、题做多了,你就会发现,这道题属于送分题,为什么这样说?3、具体解题思路: 五、Java算法源码六、效果展示1、输入2、输出 华为OD机试 2023B…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 ​ 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

以光量子为例,详解量子获取方式

光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学&#xff08;silicon photonics&#xff09;的光波导&#xff08;optical waveguide&#xff09;芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中&#xff0c;光既是波又是粒子。光子本…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

解读《网络安全法》最新修订,把握网络安全新趋势

《网络安全法》自2017年施行以来&#xff0c;在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂&#xff0c;网络攻击、数据泄露等事件频发&#xff0c;现行法律已难以完全适应新的风险挑战。 2025年3月28日&#xff0c;国家网信办会同相关部门起草了《网络安全…...