机器学习基础算法--回归类型和评价分析
目录
1.数据归一化处理
2.数据标准化处理
3.Lasso回归模型
4.岭回归模型
5.评价指标计算
1.数据归一化处理
"""
x的归一化的方法还是比较多的我们就选取最为基本的归一化方法
x'=(x-x_min)/(x_max-x_min)
"""
import numpy as np
from sklearn.preprocessing import MinMaxScaler
rd = np.random.RandomState(1614)
X =rd.randint(0, 20, (5, 5))
scaler = MinMaxScaler()#归一化
# 对数据进行归一化
X_normalized = scaler.fit_transform(X)
X_normalized

2.数据标准化处理
"""
标准化的方法x'=(x-u)/(标准差)
"""
import numpy as np
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
rd = np.random.RandomState(1614)
X =rd.randint(0, 20, (5, 5))#X时特征数据
# 创建StandardScaler对象(标准化)
scaler = StandardScaler()
X_standardized = scaler.fit_transform(X)
X_standardized
3.Lasso回归模型
"""
lasso回归
"""
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.linear_model import Lasso
# 从Excel读取数据
dataframe = pd.read_excel('LinearRegression.xlsx')
data=np.array(dataframe)
X=data[:,0].reshape(-1,1)
Y=data[:,1]
# 创建Lasso回归模型
lambda_ = 0.1 # 正则化强度
lasso_reg = Lasso(alpha=lambda_)
# 拟合回归模型
lasso_reg.fit(X, y)
# 计算回归系数
coefficients = np.append(lasso_reg.coef_,lasso_reg.intercept_)
# 绘制散点图和拟合曲线
plt.figure(figsize=(8,6), dpi=500)
plt.scatter(X, y, marker='.', color='b',label='Data Points',s=64)
plt.plot(X, lasso_reg.predict(X), color='r', label='Lasso Regression')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Lasso Regression')
plt.legend()
plt.text(x=-0.38,y=60,color='r',s="Lasso Regression Coefficients:{}".format( coefficients))
plt.savefig(r'C:\Users\Zeng Zhong Yan\Desktop\Lasso Regression.png')
plt.show()
4.岭回归模型
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.linear_model import Ridge# 从Excel读取数据
dataframe = pd.read_excel('LinearRegression.xlsx')
data=np.array(dataframe)
X=data[:,0].reshape(-1,1)
Y=data[:,1]
#创建岭回归模型
lambda_ = 0.1 # 正则化强度
ridge_reg = Ridge(alpha=lambda_)
#拟合岭回归模型并且计算回归系数
ridge_reg.fit(X, y)
coefficients = np.append(ridge_reg.coef_,ridge_reg.intercept_)
#绘制可视化图
plt.figure(figsize=(8, 6), dpi=500)
plt.scatter(X, y, marker='.', color='b',label='Data Points',s=64)
plt.plot(X, ridge_reg.predict(X), color='r', label='Ridge Regression')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Ridge Regression')
plt.legend()
plt.text(x=-0.38,y=60,color='r',s="Ridge Regression Coefficients:{}".format(coefficients))
plt.savefig(r'C:\Users\Zeng Zhong Yan\Desktop\Ridge Regression.png')
plt.show()

5.评价指标计算
MSE=i=1n(Yi-Y^)2nRMES=i=1n(Yi-Y^)2nMAE=i=1n|Yi-Y^|nR2=1-i=1n(Y^-Yi)2i=1n(Y¯-Yi)2

#4种误差评价指标
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
# 预测值
y_pred = ridge_reg.predict(X)
# 计算均方误差(MSE)
MSE = mean_squared_error(y, y_pred)
# 计算均方根误差(RMSE)
RMSE= np.sqrt(mse)
# 计算平均绝对误差(MAE)
MAE= mean_absolute_error(y, y_pred)
# 计算 R 方(决定系数)
R_squre = r2_score(y, y_pred)
print("均方误差:", MSE )
print("均方根误差:", RMSE)
print("平均绝对误差:", MAE)
print("R方误差系数:", R_squre)

相关文章:
机器学习基础算法--回归类型和评价分析
目录 1.数据归一化处理 2.数据标准化处理 3.Lasso回归模型 4.岭回归模型 5.评价指标计算 1.数据归一化处理 """ x的归一化的方法还是比较多的我们就选取最为基本的归一化方法 x(x-x_min)/(x_max-x_min) """ import numpy as np from sklea…...
MATLAB 软件功能简介
MATLAB 的名称源自 Matrix Laboratory,1984 年由美国 Mathworks 公司推向市场。 它是一种科学计算软件,专门以矩阵的形式处理数据。MATLAB 将高性能的数值计算和可 视化集成在一起,并提供了大量的内置函数,从而被广泛的应用于科学计算、控制…...
deepfm内容理解
对于CTR问题,被证明的最有效的提升任务表现的策略是特征组合(Feature Interaction); 两个问题: 如何更好地学习特征组合,进而更加精确地描述数据的特点; 如何更高效的学习特征组合。 DNN局限 :当我们使…...
postgresql-集合运算
postgresql-集合运算 并集交集差集集合运算符的优先级 并集 create table excellent_emp( year int not null, emp_id integer not null, constraint pk_excellent_emp primary key(year,emp_id) );insert into excellent_emp values(2018,9); insert into excellent_emp value…...
[持续更新]计算机经典面试题基础篇Day2
[通用]计算机经典面试题基础篇Day2 1、单例模式是什么,线程安全吗 单例模式是一种设计模式,旨在确保一个类只有一个实例,并提供全局访问点。通过使用单例模式,可以避免多次创建相同的对象,节省内存资源,同…...
C++:类和对象(二)
本文主要介绍:构造函数、析构函数、拷贝构造函数、赋值运算符重载、const成员函数、取地址及const取地址操作符重载。 目录 一、类的六个默认成员函数 二、构造函数 1.概念 2.特性 三、析构函数 1.概念 2.特性 四、拷贝构造函数 1.概念 2.特征 五、赋值…...
Java“牵手”京东商品详情数据,京东商品详情API接口,京东API接口申请指南
京东平台商品详情接口是开放平台提供的一种API接口,通过调用API接口,开发者可以获取京东商品的标题、价格、库存、月销量、总销量、库存、详情描述、图片等详细信息 。 获取商品详情接口API是一种用于获取电商平台上商品详情数据的接口,通过…...
Fluidd摄像头公网无法正常显示修复一例
Fluidd摄像头在内网正常显示,公网一直无法显示,经过排查发现由于url加了端口号引起的,摄像头url中正常填写的是/webcam?actionsnapshot,或者/webcam?actionstream。但是由于nginx跳转机制,会被301跳转到/webcam/?ac…...
【C++ 学习 ⑳】- 详解二叉搜索树
目录 一、概念 二、实现 2.1 - BST.h 2.2 - test.cpp 三、应用 四、性能分析 一、概念 二叉搜索树(BST,Binary Search Tree),又称二叉排序树或二叉查找树。 二叉搜索树是一棵二叉树,可以为空;如果不…...
Java中网络的基本介绍。网络通信,网络,ip地址,域名,端口,网络通信协议,TCP/IP传输过程,网络通信协议模型,TCP协议,UDP协议
- 网络通信 概念:网络通信是指通过计算机网络进行信息传输的过程,包括数据传输、语音通话、视频会议等。在网络通信中,数据被分成一系列的数据包,并通过网络传输到目的地。在数据传输过程中,需要确保数据的完整性、准…...
【Qt】总体把握文本编码问题
在项目开发中,经常会遇到文本编码问题。文本编码知识非常基础,但对于新手来说,可能需要花费较长的时间去尝试,才能在脑海中建立对编码的正确认知。文本编码原理并不难,难的是在项目实践中掌握正确处理文本编码的方法。…...
Linux命令(77)之curl
linux命令之curl 1.curl介绍 linux命令之curl是一款强大的http命令行工具,它支持文件的上传和下载,是综合传输工具。 2.curl用法 curl [参数] [url] curl参数 参数说明-C断点续传-o <filename>把输出写到filename文件中-x在给定的端口上使用HT…...
详解 sudo usermod -aG docker majn
这个命令涉及到几个 Linux 系统管理的基础概念,包括 sudo、usermod 和用户组管理。我们可以逐一地解析它们: sudo: sudo(superuser do)允许一个已经被授权的用户以超级用户或其他用户的身份执行一个命令。当使用 sudo 前缀一个命令…...
大数据课程L2——网站流量项目的算法分析数据处理
文章作者邮箱:yugongshiye@sina.cn 地址:广东惠州 ▲ 本章节目的 ⚪ 了解网站流量项目的算法分析; ⚪ 了解网站流量项目的数据处理; 一、项目的算法分析 1. 概述 网站流量统计是改进网站服务的重要手段之一,通过获取用户在网站的行为,可以分析出哪些内…...
jar包或exe程序设置为windows服务
最近在使用java和python制作客户端时突发奇想,是否能够通过一种方法来讲jar包和exe程序打包成windows服务呢?简单了解了一下是可以的。 首先要用到的是winSW,制作windows服务的过程非常简单,仅需几步制作完成,也不需要…...
数据结构--- 树
(一)知识补充 定义 树是一种数据结构,它是由n(n≥0)个有限节点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。 它具有以下的特点: 每个节点有零个或多个子节点; 没有父节点的节点称为根节点;每一个非根…...
两个pdf文件合并为一个怎么操作?分享pdf合并操作步骤
不管是初入职场的小白,还是久经职场的高手,都必须深入了解pdf,特别是关于pdf的各种操作,如编辑、合并、压缩等操作,其中合并是这么多操作里面必需懂的技能之一,但是很多人还是不知道两个pdf文件合并为一个怎…...
Zookeeper简述
数新网络-让每个人享受数据的价值 官网现已全新升级—欢迎访问! 前 言 ZooKeeper是一个开源的、高可用的、分布式的协调服务,由Apache软件基金会维护。它旨在帮助管理和协调分布式系统和应用程序,提供了一个可靠的平台,用于处理…...
1、Flutter移动端App实战教程【环境配置、模拟器配置】
一、概述 Flutter是Google用以帮助开发者在IOS和Android 两个平台开发高质量原生UI的移动SDK,一份代码可以同时生成IOS和Android两个高性能、高保真的应用程序。 二、渲染机制 之所以说Flutter能够达到可以媲美甚至超越原生的体验,主要在于其拥有高性…...
stride与padding对输出尺寸的计算
公式: 练习: 图1: input4,filter3,padding0,stride1 output2 图2: input5,filter3,padding0,stride2 output2 图3: input6,filter3&am…...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...
iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...
现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...
基于SpringBoot在线拍卖系统的设计和实现
摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统,主要的模块包括管理员;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...
【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看
文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...
day36-多路IO复用
一、基本概念 (服务器多客户端模型) 定义:单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用:应用程序通常需要处理来自多条事件流中的事件,比如我现在用的电脑,需要同时处理键盘鼠标…...
