当前位置: 首页 > news >正文

机器学习基础算法--回归类型和评价分析

目录

1.数据归一化处理

2.数据标准化处理

3.Lasso回归模型

4.岭回归模型

5.评价指标计算


1.数据归一化处理

"""
x的归一化的方法还是比较多的我们就选取最为基本的归一化方法
x'=(x-x_min)/(x_max-x_min)
"""
import numpy as np
from sklearn.preprocessing import MinMaxScaler
rd = np.random.RandomState(1614) 
X =rd.randint(0, 20, (5, 5))
scaler = MinMaxScaler()#归一化
# 对数据进行归一化
X_normalized = scaler.fit_transform(X)
X_normalized

2.数据标准化处理

"""
标准化的方法x'=(x-u)/(标准差)
"""
import numpy as np
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
rd = np.random.RandomState(1614) 
X =rd.randint(0, 20, (5, 5))#X时特征数据
# 创建StandardScaler对象(标准化)
scaler = StandardScaler()
X_standardized = scaler.fit_transform(X)
X_standardized

  

3.Lasso回归模型

"""
lasso回归
"""
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.linear_model import Lasso
# 从Excel读取数据
dataframe = pd.read_excel('LinearRegression.xlsx')
data=np.array(dataframe)
X=data[:,0].reshape(-1,1)
Y=data[:,1]
# 创建Lasso回归模型
lambda_ = 0.1  # 正则化强度
lasso_reg = Lasso(alpha=lambda_)
# 拟合回归模型
lasso_reg.fit(X, y)
# 计算回归系数
coefficients = np.append(lasso_reg.coef_,lasso_reg.intercept_)
# 绘制散点图和拟合曲线
plt.figure(figsize=(8,6), dpi=500)
plt.scatter(X, y,  marker='.', color='b',label='Data Points',s=64)
plt.plot(X, lasso_reg.predict(X), color='r', label='Lasso Regression')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Lasso Regression')
plt.legend()
plt.text(x=-0.38,y=60,color='r',s="Lasso Regression Coefficients:{}".format( coefficients))
plt.savefig(r'C:\Users\Zeng Zhong Yan\Desktop\Lasso Regression.png')
plt.show()

  

4.岭回归模型

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.linear_model import Ridge# 从Excel读取数据
dataframe = pd.read_excel('LinearRegression.xlsx')
data=np.array(dataframe)
X=data[:,0].reshape(-1,1)
Y=data[:,1]
#创建岭回归模型
lambda_ = 0.1  # 正则化强度
ridge_reg = Ridge(alpha=lambda_)
#拟合岭回归模型并且计算回归系数
ridge_reg.fit(X, y)
coefficients = np.append(ridge_reg.coef_,ridge_reg.intercept_)
#绘制可视化图
plt.figure(figsize=(8, 6), dpi=500)
plt.scatter(X, y,  marker='.', color='b',label='Data Points',s=64)
plt.plot(X, ridge_reg.predict(X), color='r', label='Ridge Regression')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Ridge Regression')
plt.legend()
plt.text(x=-0.38,y=60,color='r',s="Ridge Regression Coefficients:{}".format(coefficients))
plt.savefig(r'C:\Users\Zeng Zhong Yan\Desktop\Ridge Regression.png')
plt.show()

5.评价指标计算

MSE=i=1n(Yi-Y^)2nRMES=i=1n(Yi-Y^)2nMAE=i=1n|Yi-Y^|nR2=1-i=1n(Y^-Yi)2i=1n(Y¯-Yi)2

#4种误差评价指标
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
# 预测值
y_pred = ridge_reg.predict(X)
# 计算均方误差(MSE)
MSE = mean_squared_error(y, y_pred)
# 计算均方根误差(RMSE)
RMSE= np.sqrt(mse)
# 计算平均绝对误差(MAE)
MAE= mean_absolute_error(y, y_pred)
# 计算 R 方(决定系数)
R_squre = r2_score(y, y_pred)
print("均方误差:", MSE )
print("均方根误差:", RMSE)
print("平均绝对误差:", MAE)
print("R方误差系数:", R_squre)

相关文章:

机器学习基础算法--回归类型和评价分析

目录 1.数据归一化处理 2.数据标准化处理 3.Lasso回归模型 4.岭回归模型 5.评价指标计算 1.数据归一化处理 """ x的归一化的方法还是比较多的我们就选取最为基本的归一化方法 x(x-x_min)/(x_max-x_min) """ import numpy as np from sklea…...

MATLAB 软件功能简介

MATLAB 的名称源自 Matrix Laboratory,1984 年由美国 Mathworks 公司推向市场。 它是一种科学计算软件,专门以矩阵的形式处理数据。MATLAB 将高性能的数值计算和可 视化集成在一起,并提供了大量的内置函数,从而被广泛的应用于科学计算、控制…...

deepfm内容理解

对于CTR问题,被证明的最有效的提升任务表现的策略是特征组合(Feature Interaction); 两个问题: 如何更好地学习特征组合,进而更加精确地描述数据的特点; 如何更高效的学习特征组合。 DNN局限 :当我们使…...

postgresql-集合运算

postgresql-集合运算 并集交集差集集合运算符的优先级 并集 create table excellent_emp( year int not null, emp_id integer not null, constraint pk_excellent_emp primary key(year,emp_id) );insert into excellent_emp values(2018,9); insert into excellent_emp value…...

[持续更新]计算机经典面试题基础篇Day2

[通用]计算机经典面试题基础篇Day2 1、单例模式是什么,线程安全吗 单例模式是一种设计模式,旨在确保一个类只有一个实例,并提供全局访问点。通过使用单例模式,可以避免多次创建相同的对象,节省内存资源,同…...

C++:类和对象(二)

本文主要介绍:构造函数、析构函数、拷贝构造函数、赋值运算符重载、const成员函数、取地址及const取地址操作符重载。 目录 一、类的六个默认成员函数 二、构造函数 1.概念 2.特性 三、析构函数 1.概念 2.特性 四、拷贝构造函数 1.概念 2.特征 五、赋值…...

Java“牵手”京东商品详情数据,京东商品详情API接口,京东API接口申请指南

京东平台商品详情接口是开放平台提供的一种API接口,通过调用API接口,开发者可以获取京东商品的标题、价格、库存、月销量、总销量、库存、详情描述、图片等详细信息 。 获取商品详情接口API是一种用于获取电商平台上商品详情数据的接口,通过…...

Fluidd摄像头公网无法正常显示修复一例

Fluidd摄像头在内网正常显示,公网一直无法显示,经过排查发现由于url加了端口号引起的,摄像头url中正常填写的是/webcam?actionsnapshot,或者/webcam?actionstream。但是由于nginx跳转机制,会被301跳转到/webcam/?ac…...

【C++ 学习 ⑳】- 详解二叉搜索树

目录 一、概念 二、实现 2.1 - BST.h 2.2 - test.cpp 三、应用 四、性能分析 一、概念 二叉搜索树(BST,Binary Search Tree),又称二叉排序树或二叉查找树。 二叉搜索树是一棵二叉树,可以为空;如果不…...

Java中网络的基本介绍。网络通信,网络,ip地址,域名,端口,网络通信协议,TCP/IP传输过程,网络通信协议模型,TCP协议,UDP协议

- 网络通信 概念:网络通信是指通过计算机网络进行信息传输的过程,包括数据传输、语音通话、视频会议等。在网络通信中,数据被分成一系列的数据包,并通过网络传输到目的地。在数据传输过程中,需要确保数据的完整性、准…...

【Qt】总体把握文本编码问题

在项目开发中,经常会遇到文本编码问题。文本编码知识非常基础,但对于新手来说,可能需要花费较长的时间去尝试,才能在脑海中建立对编码的正确认知。文本编码原理并不难,难的是在项目实践中掌握正确处理文本编码的方法。…...

Linux命令(77)之curl

linux命令之curl 1.curl介绍 linux命令之curl是一款强大的http命令行工具&#xff0c;它支持文件的上传和下载&#xff0c;是综合传输工具。 2.curl用法 curl [参数] [url] curl参数 参数说明-C断点续传-o <filename>把输出写到filename文件中-x在给定的端口上使用HT…...

详解 sudo usermod -aG docker majn

这个命令涉及到几个 Linux 系统管理的基础概念&#xff0c;包括 sudo、usermod 和用户组管理。我们可以逐一地解析它们&#xff1a; sudo: sudo&#xff08;superuser do&#xff09;允许一个已经被授权的用户以超级用户或其他用户的身份执行一个命令。当使用 sudo 前缀一个命令…...

大数据课程L2——网站流量项目的算法分析数据处理

文章作者邮箱:yugongshiye@sina.cn 地址:广东惠州 ▲ 本章节目的 ⚪ 了解网站流量项目的算法分析; ⚪ 了解网站流量项目的数据处理; 一、项目的算法分析 1. 概述 网站流量统计是改进网站服务的重要手段之一,通过获取用户在网站的行为,可以分析出哪些内…...

jar包或exe程序设置为windows服务

最近在使用java和python制作客户端时突发奇想&#xff0c;是否能够通过一种方法来讲jar包和exe程序打包成windows服务呢&#xff1f;简单了解了一下是可以的。 首先要用到的是winSW&#xff0c;制作windows服务的过程非常简单&#xff0c;仅需几步制作完成&#xff0c;也不需要…...

数据结构--- 树

(一)知识补充 定义 树是一种数据结构,它是由n(n≥0)个有限节点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。​ 它具有以下的特点: 每个节点有零个或多个子节点; 没有父节点的节点称为根节点;每一个非根…...

两个pdf文件合并为一个怎么操作?分享pdf合并操作步骤

不管是初入职场的小白&#xff0c;还是久经职场的高手&#xff0c;都必须深入了解pdf&#xff0c;特别是关于pdf的各种操作&#xff0c;如编辑、合并、压缩等操作&#xff0c;其中合并是这么多操作里面必需懂的技能之一&#xff0c;但是很多人还是不知道两个pdf文件合并为一个怎…...

Zookeeper简述

数新网络-让每个人享受数据的价值 官网现已全新升级—欢迎访问&#xff01; 前 言 ZooKeeper是一个开源的、高可用的、分布式的协调服务&#xff0c;由Apache软件基金会维护。它旨在帮助管理和协调分布式系统和应用程序&#xff0c;提供了一个可靠的平台&#xff0c;用于处理…...

1、Flutter移动端App实战教程【环境配置、模拟器配置】

一、概述 Flutter是Google用以帮助开发者在IOS和Android 两个平台开发高质量原生UI的移动SDK&#xff0c;一份代码可以同时生成IOS和Android两个高性能、高保真的应用程序。 二、渲染机制 之所以说Flutter能够达到可以媲美甚至超越原生的体验&#xff0c;主要在于其拥有高性…...

stride与padding对输出尺寸的计算

公式&#xff1a; 练习&#xff1a; 图1&#xff1a; input4&#xff0c;filter3&#xff0c;padding0&#xff0c;stride1 output2 图2&#xff1a; input5&#xff0c;filter3&#xff0c;padding0&#xff0c;stride2 output2 图3&#xff1a; input6&#xff0c;filter3&am…...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

如何为服务器生成TLS证书

TLS&#xff08;Transport Layer Security&#xff09;证书是确保网络通信安全的重要手段&#xff0c;它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书&#xff0c;可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持&#xff0c;都是在为未来积攒底气。 案例&#xff1a;OLED显示一个A 这边观察到一个点&#xff0c;怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 &#xff1a; 如果代码里信号切换太快&#xff08;比如 SDA 刚变&#xff0c;SCL 立刻变&#…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...