2023数学建模国赛C题思路--蔬菜类商品的自动定价与补货决策
C 题 蔬菜类商品的自动定价与补货决策
在生鲜商超中,一般蔬菜类商品的保鲜期都比较短,且品相随销售时间的增加而变差,
大部分品种如当日未售出,隔日就无法再售。因此,商超通常会根据各商品的历史销售和需
求情况每天进行补货。
由于商超销售的蔬菜品种众多、产地不尽相同,而蔬菜的进货交易时间通常在凌晨 3:00-
4:00,为此商家须在不确切知道具体单品和进货价格的情况下,做出当日各蔬菜品类的补货
决策。蔬菜的定价一般采用“成本加成定价”方法,商超对运损和品相变差的商品通常进行
打折销售。可靠的市场需求分析,对补货决策和定价决策尤为重要。从需求侧来看,蔬菜类
商品的销售量与时间往往存在一定的关联关系;从供给侧来看,蔬菜的供应品种在 4 月至 10
月较为丰富,商超销售空间的限制使得合理的销售组合变得极为重要。
附件 1 给出了某商超经销的 6 个蔬菜品类的商品信息;附件 2 和附件 3 分别给出了该
商超 2020 年 7 月 1 日至 2023 年 6 月 30 日各商品的销售流水明细与批发价格的相关数据;
附件 4 给出了各商品近期的损耗率数据。请根据附件和实际情况建立数学模型解决以下问
题:
裙号:882663918
完整思路:https://www.jdmm.cc/file/2709537/
完整代码:https://www.jdmm.cc/file/2709542/
问题 1 蔬菜类商品不同品类或不同单品之间可能存在一定的关联关系,请分析蔬菜各
品类及单品销售量的分布规律及相互关系。
问题一要求分析蔬菜各品类及单品销售量的分布规律及相互关系。下
- 数据预处理 首先,我们需要对附件2中的销售流水明细数据进行预处理,以便于后续的分析和建模。具体地,我们可以按照以下步骤进行:
- 对销售流水明细数据进行汇总,得到各蔬菜品类和单品的销售总量。
- 对销售总量进行归一化处理,以便于后续的分析和比较。
- 分析销售量的分布规律 接下来,我们需要分析各蔬菜品类和单品的销售量的分布规律。具体地,我们可以按照以下步骤进行:
- 绘制销售量的直方图和箱线图,观察它们的分布情况和异常值情况。
- 计算销售量的均值、方差、偏度和峰度等统计量,以便于后续的分析和比较。
- 进行聚类分析,将蔬菜品类和单品划分为若干个类别,以便于后续的分析和建模。
- 分析销售量的相互关系 在分析了销售量的分布规律之后,我们可以进一步分析各蔬菜品类和单品之间的销售量的相互关系。具体地,我们可以按照以下步骤进行:
- 绘制销售量的散点图,观察它们之间的关系。
- 计算销售量之间的相关系数,判断它们之间的线性关系的强度和方向。
- 进行因子分析
问题 2 考虑商超以品类为单位做补货计划,请分析各蔬菜品类的销售总量与成本加成
定价的关系,并给出各蔬菜品类未来一周(2023 年 7 月 1-7 日)的日补货总量和定价策略,
使得商超收益最大。
问题 2要求分析各蔬菜品类的销售总量与成本加成定价的关系,并给出各蔬菜品类未来一周(2023年7月1-7日)的日补货总量和定价策略,使得商超收益最大。
- 数据预处理 首先,我们需要对附件2和附件3中的数据进行预处理,以便于后续的分析和建模。具体地,我们可以按照以下步骤进行:
- 对销售流水明细数据进行汇总,得到各蔬菜品类的销售总量。
- 对批发价格数据进行处理,计算各蔬菜品类的成本加成定价。
- 分析销售总量与成本加成定价的关系 接下来,我们需要分析各蔬菜品类的销售总量与成本加成定价的关系。具体地,我们可以按照以下步骤进行:
- 绘制销售总量与成本加成定价的散点图,观察它们之间的关系。
- 计算销售总量与成本加成定价之间的相关系数,判断它们之间的线性关系的强度和方向。
- 进行回归分析,得到销售总量与成本加成定价之间的线性回归方程,以便于后续的建模和优化。
- 建立数学模型 在分析了销售总量与成本加成定价的关系之后,我们可以建立数学模型,以最大化商超的收益。具体地,我们可以按照以下步骤进行: - 定义决策变量:对于每个蔬菜品类,我们定义一个补货量和一个定价变量,分别表示商超在未来一周内每天补货的数量和每个蔬菜品类的定价。
- 定义目标函数:商超的收益可以定义为销售收入减去成本。因此,我们可以将目标函数定义为: max Σ(销售收入 - 成本) 其中,Σ表示对所有蔬菜品类求和,销售收入可以通过补货量和定价计算得到,成本可以通过批发价格和补货量计算得到。
- 定义约束条件:为了保证补货量和定价的合理性,我们需要定义一些约束条件。具体地,我们可以按照以下方式定义约束条件:
- 补货量约束:商超每天补货的数量不能超过该蔬菜品类的销售总量。
- 定价约束:商超的定价必须在一定的范围内,以保证价格的合理性和市场竞争力。
- 收益约束:商超的收益必须大于等于一个给定的阈值,以保证商超的盈利能力。
- 求解数学模型 在建立了数学模型之后,我们可以使用数学优化方法,如线性规划或整数规划,来求解模型,得到最优的补货计划和定价策略。具体地,我们可以使用求解器或其他数学优化软件,将模型输入其中,然后运行求解器,得到最优的补货量和定价。最后,我们可以根据模型的结果,给出各蔬菜品类未来一周的日补货总量和定价策略,以实现商超收益最大化。 总之,通过以上的步骤,我们可以分析各蔬菜品类的销售总量与成本加成定价的关系,建立数学模型,求解模型,得到最优的补货计划和定价策略,以实现商超收益最大化。需要注意的是,在实际应用中,我们还需要考虑一些其他的因素,如市场需求、供应链管理、损耗率等,以保证模型的准确性和可行性。
问题 3 因蔬菜类商品的销售空间有限,商超希望进一步制定单品的补货计划,要求可
售单品总数控制在 27-33 个,且各单品订购量满足最小陈列量 2.5 千克的要求。根据 2023
年 6 月 24-30 日的可售品种,给出 7 月 1 日的单品补货量和定价策略,在尽量满足市场对各
品类蔬菜商品需求的前提下,使得商超收益最大。
问题三要求制定单品的补货计划,要求可售单品总数控制在27-33个,且各单品订购量满足最小陈列量2.5千克的要求。根据2023年6月24-30日的可售品种,给出7月1日的单品补货量和定价策略,在尽量满足市场对各品类蔬菜商品需求的前提下,使得商超收益最大。
- 数据预处理 首先,我们需要对附件2中的销售流水明细数据进行预处理,以便于后续的分析和建模。具体地,我们可以按照以下步骤进行:
- 对销售流水明细数据进行汇总,得到各蔬菜品类和单品的销售总量。
- 对销售总量进行归一化处理,以便于后续的分析和比较。
- 制定补货计划和定价策略 接下来,我们需要制定单品的补货计划和定价策略。具体地,我们可以按照以下步骤进行:
- 根据可售品种和市场需求,确定需要补货的单品种类和数量。
- 根据各单品的销售量和成本加成定价的关系,计算出各单品的售价。
- 根据各单品的售价和损耗率,计算出各单品的净收益。
- 根据各单品的净收益和补货量,计算出商超的总收益。
- 利用数学优化方法,求解最优的补货计划和定价策略,使得商超收益最大化。
- 控制单品的数量和订购量 根据问题三的要求,商超希望制定单品的补货计划,要求可售单品总数控制在27-33个,且各单品订购量满足最小陈列量2.5千克的要求。因此,在制定补货计划和定价策略时,需要考虑这些限制条件,以确保计的可行性和有效性。具体地,我们可以按照以下步骤进行:
- 根据可售品种和市场需求,确定需要补货的单品种类和数量。
- 对于每个单品,计算出其最小陈列量,以确保其能够满足市场需求。
- 根据可售单品总数的限制,对各单品的补货量进行调整,以确保总数控制在27-33个之间。
- 根据各单品的补货量和最小陈列量,计算出各单品的订购量,以确保其能够满足市场需求和陈列要求。 需要注意的是,这些限制条件可能会相互制约,因此需要进行综合考虑和优化,以达到最优的补货计划和定价策略。
问题 4 为了更好地制定蔬菜商品的补货和定价决策,商超还需要采集哪些相关数据,
这些数据对解决上述问题有何帮助,请给出你们的意见和理由。
对于问题四,商超需要采集哪些相关数据,这些数据对解决上述问题有何帮助,请给出你们的意见和理由。 为了更好地制定蔬菜商品的补货和定价决策,商超需要采集以下相关数据:
- 市场需求数据:商超需要了解市场对各品类蔬菜商品的需求情况,以便于制定最优的补货计划和定价策略。这些数据可以通过市场调研、销售数据分析等方式获得。
- 成本数据:商超需要了解各单品的成本情况,以便于计算出各单品的售价和净收益。这些数据可以通过采购记录、供应商报价等方式获得。
- 损耗率数据:商超需要了解各单品的损耗率情况,以便于计算出各单品的净收益。这些数据可以通过库存管理系统、盘点记录等方式获得。
- 供应商数据:商超需要了解各单品的供应商情况,以便于进行供应商评估和管理。这些数据可以通过采购记录、供应商合同等方式获得。
这些数据对解决上述问题非常有帮助。例如,市场需求数据可以帮助商超了解市场对各品类蔬菜商品的需求情况,从而制定最优的补货计划和定价策略;成本数据和损耗率数据可以帮助商超计算出各单品的售价和净收益,从而实现商超收益最大化;供应商数据可以帮助商超进行供应商评估和管理,从而确保商品的质量和供应.
附件1给出了6个蔬菜品类的商品信息,包括品类、单品名称、供应商、规格、单位和成本加成等信息。附件2和附件3分别给出了该商2020年7月1日至2023年6月30日各商品的销售流水明细与批发价格的相关数据。附件4给出了各商品近期的损耗率数据。这些数据对制定蔬菜类商品的补货和定价决策非常有帮助,可以帮助商超了解市场需求、商品成本、损耗情况等,从而制定最优的补货计划和定价策略,实现商超收益最大化。
附件 1 6 个蔬菜品类的商品信息
附件 2 销售流水明细数据
附件 3 蔬菜类商品的批发价格
附件 4 蔬菜类商品的近期损耗率
相关文章:
2023数学建模国赛C题思路--蔬菜类商品的自动定价与补货决策
C 题 蔬菜类商品的自动定价与补货决策 在生鲜商超中,一般蔬菜类商品的保鲜期都比较短,且品相随销售时间的增加而变差, 大部分品种如当日未售出,隔日就无法再售。因此,商超通常会根据各商品的历史销售和需 求情况每天进…...
vue2与vue3的使用区别
1. 脚手架创建项目的区别: vue2: vue init webpack “项目名称”vue3: vue create “项目名称” 或者vue3一般与vite结合使用: npm create vitelatest yarn create vite2. template中结构 vue2: template下只有一个元素节点 <template><div><div…...
Apache httpd漏洞复现
文章目录 未知后缀名解析漏洞多后缀名解析漏洞启动环境漏洞复现 换行解析漏洞启动环境漏洞复现 未知后缀名解析漏洞 该漏洞与Apache、php版本无关,属于用户配置不当造成的解析漏洞。在有多个后缀的情况下,只要一个文件含有.php后缀的文件即将被识别成PHP…...
【漏洞复现】时空智友企业流程化管控系统文件上传
漏洞描述 通过时空智友该系统,可让企业实现流程的自动化、协同上提升、数据得洞察及决策得优化,来提高工作效率、管理水平及企业的竞争力。时空智友企业流程化 formservice接口处存有任意文件上传漏洞,未经认证得攻击者可利用此接口上传后门程序,可导致服务器失陷。 免责…...
elasticsearch的DSL查询文档
DSL查询分类 查询所有:查询出所有数据,一般测试用。例如:match_all 全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如: match_query multi_ma…...
IP地址、子网掩码、网络地址、广播地址、IP网段
文章目录 IP地址IP地址分类子网掩码网络地址广播地址IP网段 本文主要讨论iPv4地址。 IP地址 实际的 IP 地址是一串32 比特的数字,按照 8 比特(1 字节)为一组分成 4 组,分别用十进制表示然后再用圆点隔开,这就是我们平…...
ffmpeg-android studio创建jni项目
一、创建native项目 1.1、选择Native C 1.2、命名项目名称 1.3、选择C标准 1.4、项目结构 1.5、app的build.gradle plugins {id com.android.application }android {compileSdk 32defaultConfig {applicationId "com.anniljing.ffmpegnative"minSdk 25targetSdk 32…...
智慧公厕是将数据、技术、业务深度融合的公共厕所敏捷化“操作系统”
文明社会的进步离不开公共设施的不断创新和提升。而在这些公共设施中,公共厕所一直是一个备受关注和改善的领域。近年来,随着智慧城市建设的推进,智慧公厕成为了城市管理的重要一环。智慧公厕不仅仅是为公众提供方便和舒适的便利设施…...
JVM中JAVA对象和数组内存布局
对象 数组 在Java中,所有的对象都是一种特殊的数组,它们的元素可以是基本数据类型、其他对象引用或者其他任何类型。Java对象和数组的内存布局包含以下部分: 1.对象头(Object Header) 每个Java对象都有一个对象头&am…...
【2023年数学建模国赛】赛题发布
2023数学建模国赛赛题已经发布啦,距离赛题发布已经过去三个小时了,大家是否已经确定题目呢?学姐后续会持续更新赛题思路与代码~...
Java HashMap源码学习
Java HashMap源码学习 基本使用 包含创建,添加,删除,迭代,打印 val map java.util.HashMap<Int, Int>() map.put(1, 2) map.put(2, 2) map.put(3, 2) map.remove(1) map.forEach {println("it.key${it.key}, it.va…...
Gin中用于追踪用户的状态的方法?!!!
Gin中的Cookie和Session的用法 文章目录 Gin中的Cookie和Session的用法介绍Cookie代码演示 Session代码展示 介绍 cookie 和 session 是 Web 开发中常用的两种技术,主要用于跟踪用户的状态信息。 Cookie func (c *Context) Cookie(name string, value string, max…...
HTTP代理与HTTPS代理在工作流程上有哪些区别
HTTP代理和HTTPS代理都是常见的代理技术,可以实现隐藏客户端IP地址、突破网络封锁、加速网站访问、过滤网络内容等功能。本文将介绍HTTP代理和HTTPS代理在工作流程上的区别。 HTTP代理的工作流程 客户端向代理服务器发送HTTP请求 当客户端需要访问某个网站时&#x…...
Docker从认识到实践再到底层原理(二-2)|Namespace+cgroups
前言 那么这里博主先安利一些干货满满的专栏了! 首先是博主的高质量博客的汇总,这个专栏里面的博客,都是博主最最用心写的一部分,干货满满,希望对大家有帮助。 高质量博客汇总 然后就是博主最近最花时间的一个专栏…...
算法的概述
算法分析: 解决同一问题的算法可以有多种。 我们希望从中选出最优的算法,效率高或者存储空间小。为此,需要对算法进行评估,分析。 通常考虑两个度量: 1、 时间复杂度:算法运行时需要的总步数,…...
菜鸟教程《Python 3 教程》笔记(19):错误与异常
菜鸟教程《Python 3 教程》笔记(19) 19 错误和异常19.1 assert(断言)19.2 异常处理19.2.1 try/except19.2.2 try/except...else19.2.3 try-finally 语句 19.3 抛出异常19.4 用户自定义异常19.5 清理行为19.5.1 定义清理行为19.5.2…...
空气净化器上亚马逊美国站需要办理什么认证?空气净化器UL867测试报告如何办理?
空气净化器又称“空气清洁器”、空气清新机、净化器,是指能够吸附、分解或转化各种空气污染物(一般包括PM2.5、粉尘、花粉、异味、甲醛之类的装修污染、细菌、过敏原等),有效提高空气清洁度的产品,主要分为家用 、商用…...
SpringBoot的测试方案
写完代码后,测试是必不可少的步骤,现在来介绍一下基于SpringBoot的测试方法。 基于SpringBoot框架写完相应功能的Controller之后,然后就可以测试功能是否正常,本博客列举MockMvc和RestTemplate两种方式来测试。 准备代码 实体类…...
华为OD机考算法题:字符串解密
目录 题目部分 解读与分析 代码实现 题目部分 题目字符串解密题目说明给定两个字符串string1和string2。 string1是一个被加扰的字符串。string1由小写英文字母(a~z)和数字字符(0~9)组成,而加扰字符串由0~9、a~f 组…...
unity 锚点设置
锚点聚合情况: 一个2d物体的位置 pos x pos y 是中心点相对于锚点的偏移量: 中心点就是位置。 按住shift 锚点和中心点都会被设置: 按住Alt: 同时按住shift和alt : 中心点 锚点 UI元素在对应的位置上。 锚点拉伸情况…...
Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...
2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面
代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口(适配服务端返回 Token) export const login async (code, avatar) > {const res await http…...
WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
