当前位置: 首页 > news >正文

算法随笔:各种经典最短路算法的简要比较总结

有多种最短路径的应用场景,它们需要用到不同的算法来解决。除了贪心最优搜索之外,其他都是最优性算法,即得到的解都是最短路径。其中m是边的数量,n是点的数量。

问题边权算法时间复杂度
一个起点,一个终点非负数;无边权(或边权为1)A*算法<O((m+n)logn)
双向搜索<O((m+n)logn)
贪心最优搜索<O(m+n)
一个起点到其他所有点无边权(或边权为1)BFSO(m+n)
非负数Dijkstra(堆优化)O((m+n)logn)
允许有负数SPFA<O(mn)
所有点对之间允许有负数FloydO(n^3)

应该在不同的场景下有选择地使用。

(1)图的规模小,并且要求多源最短路,那么使用Floyd,如果边权有负数,则需要判断负环。

(2)图的规模大,且边的权值非负,用Dijkstra,SPFA虽然在Bellman-Ford算法上进行了很大的优化,但是最坏情况下依然是O(mn),不稳定(比赛时,有的题目可能故意利用SPFA的不稳定性,如果一道题目的图规模很大,并且边的权值为非负数,它可能会故意设置不利于SPFA的测试数据,此时使用SPFA将会超时,要使用更稳定的Dijkstra)。

(3)图的规模很大,且边的权值有负数,用SPFA,并且需要判断负环。

相关文章:

算法随笔:各种经典最短路算法的简要比较总结

有多种最短路径的应用场景&#xff0c;它们需要用到不同的算法来解决。除了贪心最优搜索之外&#xff0c;其他都是最优性算法&#xff0c;即得到的解都是最短路径。其中m是边的数量&#xff0c;n是点的数量。 问题边权算法时间复杂度一个起点&#xff0c;一个终点非负数&#…...

concrt140.dll怎么下载,concrt140.dll修复工具(修复精灵下载)一键修复问题

今天&#xff0c;我将为大家介绍一个非常常见的问题&#xff1a;由于找不到concrt140.dll,无法继续执行代码怎么办。这个问题可能会让很多网友感到头疼&#xff0c;但是别担心&#xff0c;我会为大家提供5种最全详细的恢复方法。在接下来我将详细介绍这些问题及其解决方法。希望…...

自行实现字符串转浮点数函数atof()

【重复造轮子的原因】 尽管atof是标准C中自带的函数,用于将字符串转为浮点数,但是在某些环境下有可能没法使用的(例如CUDA环境中,没有atof函数,但是math.h可以使用),因此自行实现。 【通过的测试用例】 【实现的代码】 #include <stdio.h> #include <math.h…...

Windows平台Fortran编程入门

Fortran&#xff0c;原意为 Formula Translation&#xff08;公式翻译器&#xff09;&#xff1b;一门出现很早的面向科学计算的高级语言&#xff0c;在数值计算领域仍然使用&#xff1b; 免费 Fortran 的编译器包括 GCC 的 GFortran&#xff0c;Intel 的 Intel Fortran Compi…...

05-Mysql夺命三连问:什么是索引下推?什么是索引覆盖?什么是回表?【Java面试总结】

Mysql夺命三连问&#xff1a;什么是索引下推&#xff1f;什么是索引覆盖&#xff1f;什么是回表&#xff1f; 索引下推是mysql5.6 提出的一个查询优化方案&#xff0c;主要的目的是减少数据或查询中不必要的读取和计算&#xff0c;它的原理是将查询条件尽可能的推送到索引层面…...

晨启,MSP430开发板,51开发板,原理图,PCB图

下载&#xff1a;https://github.com/xddun/blog_code_search...

Notepad++ 的安装及配置

由于电脑重装了Win11系统&#xff0c;干脆重头开始&#xff0c;重新安装每一个软件~~~ 很多博客或者博主都会推荐notepad的官网&#xff1a;https://notepad-plus-plus.org/ 但大家亲自点开就会发现是无响应&#xff0c;如下图 同时&#xff0c;也会有很多博主直接给网盘地址…...

✔ ★算法基础笔记(Acwing)(一)—— 基础算法(20道题)【java版本】

基础算法 一、快速排序1. 快速排序例题2. 第k个数( 快速选择 ) ✔ ✔1.31★快排二刷总结( 4点 ) 二、归并排序1. 归并排序模板题 ✔ ✔1.31★二刷总结 ★2. 逆序对的数量 ✔ ✔1.31★二刷总结 三、二分1. 数的范围 ✔1.31★二刷总结(mid > x 则是 输出最左边一个)第一个大于…...

简单记录下gin中使用中间件记录操作日志

1、直接定义中间件package middlewareimport ("bytes""encoding/json""fmt""github.com/gin-gonic/gin""go.uber.org/zap""io""strconv""strings" )func LoggerMiddleWare() gin.HandlerFunc…...

基于Matlab利用IRM和RRTstar实现无人机路径规划(附上源码+数据+说明+报告+PPT)

无人机路径规划是无人机应用领域中的关键问题之一。本文提出了一种基于IRM&#xff08;Informed RRTstar Method&#xff09;和RRTstar&#xff08;Rapidly-exploring Random Tree star&#xff09;算法的无人机路径规划方法&#xff0c;并使用Matlab进行实现。该方法通过结合I…...

uniapp使用@microsoft/signalr(报错“ReferenceError: require is not defined“)

后台老哥要用微软的signalr&#xff0c;总结了一些经验和问题 引入方法 1、npm npm i microsoft/signalr 2、下载他的js或者cdn <script src"https://cdnjs.cloudflare.com/ajax/libs/microsoft-signalr/6.0.1/signalr.js"></script>在uniapp中&…...

CloudCompare 二次开发(9)——半径滤波

目录 一、概述二、代码集成三、结果展示本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫。 一、概述 使用CloudCompare与PCL的混合编程实现点云半径滤波。半径滤波的算法原理见:PCL 半径滤波器。基于PCL将半径滤波集成到Cl…...

ElementUI浅尝辄止29:Breadcrumb 面包屑

显示当前页面的路径&#xff0c;快速返回之前的任意页面。 1.如何使用&#xff1f; 在el-breadcrumb中使用el-breadcrumb-item标签表示从首页开始的每一级。Element 提供了一个separator属性&#xff0c;在el-breadcrumb标签中设置它来决定分隔符&#xff0c;它只能是字符串&am…...

ABB MPRC086444-005数字输入模块

ABB MPRC086444-005 是一款数字输入模块&#xff0c;通常用于工业自动化和控制系统中&#xff0c;用于接收和处理数字信号。以下是这种类型的数字输入模块通常可能具备的一般功能和特点&#xff1a; 数字输入接口&#xff1a;MPRC086444-005 模块通常配备多个数字输入通道&…...

stable diffusion实践操作-常见lora模型介绍

系列文章目录 本文专门开一节写Lora相关的内容&#xff0c;在看之前&#xff0c;可以同步关注&#xff1a; stable diffusion实践操作 文章目录 系列文章目录前言一、什么是lora?1.1 lora 定义1.2 lora的基本原理1.2 通过分层控制lora 二、作用&#xff1a;2.1 复刻人物特征2…...

kubeadm 安装k8s

目录 安装k8s 环境准备 所有节点&#xff0c;关闭防火墙规则&#xff0c;关闭selinux&#xff0c;关闭swap交换&#xff08;必须关闭swap分区&#xff09; //修改主机名 //所有节点修改hosts文件 //调整内核参数 所有节点安装docker 所有节点安装kubeadm&#xff0c;kube…...

选择最适合您的Bug管理软件:市场比较与推荐

“Bug管理软件哪家好&#xff1f;市场上有许多优秀的Bug管理系统品牌如&#xff1a;Zoho Projects、JIRA、Redmine、Bugzilla、MantisBT。” 一款高效的Bug管理系统可以帮助团队更有效地发现、记录和解决软件中的问题&#xff0c;从而提高产品质量和用户满意度。本文将为您介绍…...

Spring MVC的常用注解及用法

Spring MVC的执行流程&#xff1a; 1.用户的请求首先到Controller 2.Controller将请求转发给Model 3.Model处理业务并将数据结果给Controller 4.Controller会将数据给View引擎 5.View转换数据生成最终的页面给用户。 常用注解&#xff1a; 1.requestMapping&#xff1a;…...

HTTP和HTTPS的区别、 HTTPS运行原理

HTTP 一种用于web浏览器和web服务器基于数据传递的协议基于TCP/IP协议的应用层传送&#xff0c;用于客户端和服务器之间的数据交互 HTTPS 是HTTP的安全版&#xff0c;基于SSL或TLS协议&#xff0c;对客户端和服务器之间加密和身份验证&#xff0c;使得数据之间传递具有了安全…...

统计封闭岛屿的数目

1254. 统计封闭岛屿的数目 关于岛屿的相似题目&#xff1a; 岛屿数量 – 二维矩阵的dfs算法封闭岛屿数量 – 二维矩阵的dfs算法统计封闭岛屿的数目统计子岛屿不同岛屿的数量 class MaxAreaOfIsland:"""floodFill 算法1254. 统计封闭岛屿的数目https://leetcod…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统&#xff1a;ubuntu22.04 IDE:Visual Studio Code 编程语言&#xff1a;C11 题目描述 地上有一个 m 行 n 列的方格&#xff0c;从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子&#xff0c;但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

【单片机期末】单片机系统设计

主要内容&#xff1a;系统状态机&#xff0c;系统时基&#xff0c;系统需求分析&#xff0c;系统构建&#xff0c;系统状态流图 一、题目要求 二、绘制系统状态流图 题目&#xff1a;根据上述描述绘制系统状态流图&#xff0c;注明状态转移条件及方向。 三、利用定时器产生时…...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...