当前位置: 首页 > news >正文

Windows平台Fortran编程入门

Fortran,原意为 Formula Translation(公式翻译器);一门出现很早的面向科学计算的高级语言,在数值计算领域仍然使用;

免费 Fortran 的编译器包括 GCC 的 GFortran,Intel 的 Intel Fortran Compiler 等;

下面看一下一个小巧的Fortran编译器G95;

安装以后,把G95的bin目录加入path环境变量;

新建如下的环境变量;

 

做一个简单程序,保存为test1.f90,

program addNumbers
! This simple program adds two numbersimplicit none
! Type declarationsreal :: a, b, result
! Executable statementsa = 12.0b = 15.0result = a + bprint *, 'The total is ', result
end program addNumbers

构建运行如下; 

 

再做一个test2.f90,

PROGRAM Example_1_1       ! 求两种平均値REAL :: a, b, av1, av2READ *, a, bav1 = (a + b)/2; av2 = (a*b)**0.5PRINT *, av1, av2
END

构建运行如下;输入2个数,然后计算; 

 

没有分类,先放到matlab里面; 

相关文章:

Windows平台Fortran编程入门

Fortran,原意为 Formula Translation(公式翻译器);一门出现很早的面向科学计算的高级语言,在数值计算领域仍然使用; 免费 Fortran 的编译器包括 GCC 的 GFortran,Intel 的 Intel Fortran Compi…...

05-Mysql夺命三连问:什么是索引下推?什么是索引覆盖?什么是回表?【Java面试总结】

Mysql夺命三连问:什么是索引下推?什么是索引覆盖?什么是回表? 索引下推是mysql5.6 提出的一个查询优化方案,主要的目的是减少数据或查询中不必要的读取和计算,它的原理是将查询条件尽可能的推送到索引层面…...

晨启,MSP430开发板,51开发板,原理图,PCB图

下载:https://github.com/xddun/blog_code_search...

Notepad++ 的安装及配置

由于电脑重装了Win11系统,干脆重头开始,重新安装每一个软件~~~ 很多博客或者博主都会推荐notepad的官网:https://notepad-plus-plus.org/ 但大家亲自点开就会发现是无响应,如下图 同时,也会有很多博主直接给网盘地址…...

✔ ★算法基础笔记(Acwing)(一)—— 基础算法(20道题)【java版本】

基础算法 一、快速排序1. 快速排序例题2. 第k个数( 快速选择 ) ✔ ✔1.31★快排二刷总结( 4点 ) 二、归并排序1. 归并排序模板题 ✔ ✔1.31★二刷总结 ★2. 逆序对的数量 ✔ ✔1.31★二刷总结 三、二分1. 数的范围 ✔1.31★二刷总结(mid > x 则是 输出最左边一个)第一个大于…...

简单记录下gin中使用中间件记录操作日志

1、直接定义中间件package middlewareimport ("bytes""encoding/json""fmt""github.com/gin-gonic/gin""go.uber.org/zap""io""strconv""strings" )func LoggerMiddleWare() gin.HandlerFunc…...

基于Matlab利用IRM和RRTstar实现无人机路径规划(附上源码+数据+说明+报告+PPT)

无人机路径规划是无人机应用领域中的关键问题之一。本文提出了一种基于IRM(Informed RRTstar Method)和RRTstar(Rapidly-exploring Random Tree star)算法的无人机路径规划方法,并使用Matlab进行实现。该方法通过结合I…...

uniapp使用@microsoft/signalr(报错“ReferenceError: require is not defined“)

后台老哥要用微软的signalr&#xff0c;总结了一些经验和问题 引入方法 1、npm npm i microsoft/signalr 2、下载他的js或者cdn <script src"https://cdnjs.cloudflare.com/ajax/libs/microsoft-signalr/6.0.1/signalr.js"></script>在uniapp中&…...

CloudCompare 二次开发(9)——半径滤波

目录 一、概述二、代码集成三、结果展示本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫。 一、概述 使用CloudCompare与PCL的混合编程实现点云半径滤波。半径滤波的算法原理见:PCL 半径滤波器。基于PCL将半径滤波集成到Cl…...

ElementUI浅尝辄止29:Breadcrumb 面包屑

显示当前页面的路径&#xff0c;快速返回之前的任意页面。 1.如何使用&#xff1f; 在el-breadcrumb中使用el-breadcrumb-item标签表示从首页开始的每一级。Element 提供了一个separator属性&#xff0c;在el-breadcrumb标签中设置它来决定分隔符&#xff0c;它只能是字符串&am…...

ABB MPRC086444-005数字输入模块

ABB MPRC086444-005 是一款数字输入模块&#xff0c;通常用于工业自动化和控制系统中&#xff0c;用于接收和处理数字信号。以下是这种类型的数字输入模块通常可能具备的一般功能和特点&#xff1a; 数字输入接口&#xff1a;MPRC086444-005 模块通常配备多个数字输入通道&…...

stable diffusion实践操作-常见lora模型介绍

系列文章目录 本文专门开一节写Lora相关的内容&#xff0c;在看之前&#xff0c;可以同步关注&#xff1a; stable diffusion实践操作 文章目录 系列文章目录前言一、什么是lora?1.1 lora 定义1.2 lora的基本原理1.2 通过分层控制lora 二、作用&#xff1a;2.1 复刻人物特征2…...

kubeadm 安装k8s

目录 安装k8s 环境准备 所有节点&#xff0c;关闭防火墙规则&#xff0c;关闭selinux&#xff0c;关闭swap交换&#xff08;必须关闭swap分区&#xff09; //修改主机名 //所有节点修改hosts文件 //调整内核参数 所有节点安装docker 所有节点安装kubeadm&#xff0c;kube…...

选择最适合您的Bug管理软件:市场比较与推荐

“Bug管理软件哪家好&#xff1f;市场上有许多优秀的Bug管理系统品牌如&#xff1a;Zoho Projects、JIRA、Redmine、Bugzilla、MantisBT。” 一款高效的Bug管理系统可以帮助团队更有效地发现、记录和解决软件中的问题&#xff0c;从而提高产品质量和用户满意度。本文将为您介绍…...

Spring MVC的常用注解及用法

Spring MVC的执行流程&#xff1a; 1.用户的请求首先到Controller 2.Controller将请求转发给Model 3.Model处理业务并将数据结果给Controller 4.Controller会将数据给View引擎 5.View转换数据生成最终的页面给用户。 常用注解&#xff1a; 1.requestMapping&#xff1a;…...

HTTP和HTTPS的区别、 HTTPS运行原理

HTTP 一种用于web浏览器和web服务器基于数据传递的协议基于TCP/IP协议的应用层传送&#xff0c;用于客户端和服务器之间的数据交互 HTTPS 是HTTP的安全版&#xff0c;基于SSL或TLS协议&#xff0c;对客户端和服务器之间加密和身份验证&#xff0c;使得数据之间传递具有了安全…...

统计封闭岛屿的数目

1254. 统计封闭岛屿的数目 关于岛屿的相似题目&#xff1a; 岛屿数量 – 二维矩阵的dfs算法封闭岛屿数量 – 二维矩阵的dfs算法统计封闭岛屿的数目统计子岛屿不同岛屿的数量 class MaxAreaOfIsland:"""floodFill 算法1254. 统计封闭岛屿的数目https://leetcod…...

【数据结构与算法系列4】长度最小的子数组

给定一个含有 n 个正整数的数组和一个正整数 target 。 找出该数组中满足其总和大于等于 target 的长度最小的 连续子数组 [numsl, numsl1, ..., numsr-1, numsr] &#xff0c;并返回其长度**。**如果不存在符合条件的子数组&#xff0c;返回 0 。 示例 1&#xff1a; 输入&…...

问道管理:底部渐渐抬高 今年反弹时刻或已来临

快速探底后&#xff0c;两市呈现分解走势。 沪指周三低开震动&#xff0c;指数在20日均线取得支撑后小幅上升&#xff0c;最终以红盘报收。深成指走势弱于沪指&#xff0c;尽管午后指数有所上升&#xff0c;但最终未能翻红。到收盘&#xff0c;沪指报收3158.08点&#xff0c;上…...

正规黄金代理的三大要素

对于现货黄金投资来说&#xff0c;寻找一个正规的黄金代理是十分重要的问题。在目前的现货黄金投资市场中&#xff0c;现货黄金代理的数量很多&#xff0c;他们都致力于耕耘现货黄金投资市场。当越来越多的专业人士加入到现货黄金投资的市场中当中时&#xff0c;这个市场将会越…...

css实现圆环展示百分比,根据值动态展示所占比例

代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

tomcat入门

1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效&#xff0c;稳定&#xff0c;易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...

在 Spring Boot 中使用 JSP

jsp&#xff1f; 好多年没用了。重新整一下 还费了点时间&#xff0c;记录一下。 项目结构&#xff1a; pom: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://ww…...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下&#xff0c;大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性&#xff0c;吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型&#xff0c;成为释放其巨大潜力的关键所在&…...