当前位置: 首页 > news >正文

【群智能算法改进】一种改进的鹈鹕优化算法 IPOA算法[2]【Matlab代码#58】

文章目录

    • 【`获取资源`请见文章第5节:资源获取】
    • 1. 原始POA算法
    • 2. 改进后的IPOA算法
      • 2.1 随机对立学习种群初始化
      • 2.2 动态权重系数
      • 2.3 透镜成像折射方向学习
    • 3. 部分代码展示
    • 4. 仿真结果展示
    • 5. 资源获取


获取资源请见文章第5节:资源获取】


1. 原始POA算法

此算法详细介绍请参考POA算法介绍

2. 改进后的IPOA算法

2.1 随机对立学习种群初始化

采用随机方法初始化POA种群,生成的种群不均匀,影响了收敛速度和精度。为了获得更好的初始种群,本文采用了随机对立学习策略来进行种群初始:
X i , n e w = ( l + u ) − k X i (1) X_{i,new}=(l+u)-kX_{i}\tag1 Xi,new=(l+u)kXi(1)
其中, X i X_{i} Xi为原解, X i , n e w X_{i,new} Xi,new为随机对立学习生成的反向解, k k k为[0,1]之间的随机数。
经过随机对立学习策略后,生成了 N N N个反向解,如果反向解的适应度值优于原解,就用反向解替代原解,否则保留原解。

2.2 动态权重系数

基本鹈鹕优化算法的开发阶段,在迭代后期会存在陷入局部最优的情况,使搜索失败。为克服这一弊端,再在其位置更新公式中加入动态权重系数 ω,让它在迭代初期具有较大值,促进全局搜索,迭代后期自适应变小,促进局部搜索并加快收敛速度。

2.3 透镜成像折射方向学习

透镜成像折射反向学习策略的思想来自于凸透镜成像的原理。通过基于当前坐标生成一个反向位置来扩展搜索范围,如图1所示。
在这里插入图片描述

图1 透镜成像折射反向学习原理图

在二维坐标中,x轴的搜索范围为(a, b), y轴表示一个凸透镜。假设物体A在x轴上的投影为x,高度为h,通过透镜成像,另一侧的图像为A*, A在x轴上的投影为x,高度为h*。通过以上分析,我们可以得到如下公式:
( a + b ) / 2 − x x ∗ − ( a + b ) / 2 = h h ∗ (2) \frac{(a+b)/2-x}{x^{*}-(a+b)/2 }=\frac{h}{h^{*}} \tag2 x(a+b)/2(a+b)/2x=hh(2)
对公式(2)进行转换,即可得到反向解x*的表达式为:
x ∗ = a + b 2 + a + b 2 k − x k (3) x^{*} =\frac{a+b}{2}+\frac{a+b}{2k}-\frac{x}{k} \tag3 x=2a+b+2ka+bkx(3)
其中, k = h / h ∗ k=h/h^{*} k=h/h a a a b b b可以视为某维度的上下限。本文中的 k k k是一个与迭代次数相关的动态自适应值。

3. 部分代码展示

%%
clc
clear
close all%%
Fun_name='F1'; % number of test functions: 'F1' to 'F23'
SearchAgents=30;                     % number of Pelicans (population members) 
Max_iterations=500;                  % maximum number of iteration
[lb,ub,dim,fobj]=Get_Functions_details(Fun_name); % Object function information
[Best_score_POA,Best_pos_POA,POA_curve]=POA(SearchAgents,Max_iterations,lb,ub,dim,fobj);   
[Best_score_SSA,Best_pos_SSA,SSA_curve]=SSA(SearchAgents,Max_iterations,lb,ub,dim,fobj);
[Best_score_WOA,Best_pos_WOA,WOA_curve]=WOA(SearchAgents,Max_iterations,lb,ub,dim,fobj);
[Best_score_GWO,Best_pos_GWO,GWO_curve]=GWO(SearchAgents,Max_iterations,lb,ub,dim,fobj);
[Best_score_IPOA,Best_pos_IPOA,IPOA_curve]=IPOA(SearchAgents,Max_iterations,lb,ub,dim,fobj);%%
figure('Position',[454   445   694   297]);
subplot(1,2,1);
func_plot(Fun_name);
title('Parameter space')
xlabel('x_1');
ylabel('x_2');
zlabel([Fun_name,'( x_1 , x_2 )'])subplot(1,2,2);
t = 1:Max_iterations;
semilogy(t, POA_curve, 'b-',    t, SSA_curve, 'k-',    t, WOA_curve, 'g-',  t, GWO_curve, 'm-',  t, IPOA_curve, 'r-','linewidth', 1.5);title(Fun_name)
xlabel('Iteration');
ylabel('Best fitness function');
axis tight
legend('POA','SSA','WOA','GWO','IPOA')display(['The best solution obtained by POA for ' [num2str(Fun_name)],'  is : ', num2str(Best_pos_POA)]);
display(['The best optimal value of the objective funciton found by POA  for ' [num2str(Fun_name)],'  is : ', num2str(Best_score_POA)]);
display(['The best solution obtained by SSA for ' [num2str(Fun_name)],'  is : ', num2str(Best_pos_SSA)]);
display(['The best optimal value of the objective funciton found by SSA  for ' [num2str(Fun_name)],'  is : ', num2str(Best_score_SSA)]);
display(['The best solution obtained by WOA for ' [num2str(Fun_name)],'  is : ', num2str(Best_pos_WOA)]);
display(['The best optimal value of the objective funciton found by WOA  for ' [num2str(Fun_name)],'  is : ', num2str(Best_score_WOA)]);
display(['The best solution obtained by GWO for ' [num2str(Fun_name)],'  is : ', num2str(Best_pos_GWO)]);
display(['The best optimal value of the objective funciton found by GWO  for ' [num2str(Fun_name)],'  is : ', num2str(Best_score_GWO)]);
display(['The best solution obtained by IPOA for ' [num2str(Fun_name)],'  is : ', num2str(Best_pos_IPOA)]);
display(['The best optimal value of the objective funciton found by IPOA  for ' [num2str(Fun_name)],'  is : ', num2str(Best_score_IPOA)]);

4. 仿真结果展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5. 资源获取

可以获取完整代码资源。

相关文章:

【群智能算法改进】一种改进的鹈鹕优化算法 IPOA算法[2]【Matlab代码#58】

文章目录 【获取资源请见文章第5节:资源获取】1. 原始POA算法2. 改进后的IPOA算法2.1 随机对立学习种群初始化2.2 动态权重系数2.3 透镜成像折射方向学习 3. 部分代码展示4. 仿真结果展示5. 资源获取 【获取资源请见文章第5节:资源获取】 1. 原始POA算法…...

k8s 入门到实战--部署应用到 k8s

k8s 入门到实战 01.png 本文提供视频版: 背景 最近这这段时间更新了一些 k8s 相关的博客和视频,也收到了一些反馈;大概分为这几类: 公司已经经历过服务化改造了,但还未接触过云原生。公司部分应用进行了云原生改造&…...

编程语言新特性:instanceof的改进

以前也写过类似的博文,可能重复。 要判断一个对象是哪个类或父类的实例,JAVA用到instanceof,其实语言也有类似语法。而类一般是多层继承的,有时就让人糊涂。所以我提出改进思路: instanceof:保持不变。ins…...

数据挖掘的学习路径

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ 🐴作者:秋无之地 🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据…...

逻辑回归Logistic

回归 概念 假设现在有一些数据点,我们用一条直线对这些点进行拟合(这条直线称为最佳拟合直线),这个拟合的过程就叫做回归。进而可以得到对这些点的拟合直线方程。 最后结果用sigmoid函数输出 因此,为了实现 Logisti…...

Flink提交jar出现错误RestHandlerException: No jobs included in application.

今天打包一个flink的maven工程为jar,通过flink webUI提交,发现居然报错。 如上图所示,提示错误为: Server Response Message: org.apache.flink.runtime.rest.handler.RestHandlerException: No jobs included in application. …...

【数仓基础(一)】基础概念:数据仓库【用于决策的数据集合】的概念、建立数据仓库的原因与好处

文章目录 一. 数据仓库的概念1. 面向主题2. 集成3. 随时间变化4. 非易失粒度 二. 建立数据仓库的原因三. 使用数据仓库的好处 一. 数据仓库的概念 数据仓库的主要作用: 数据仓库概念主要是解决多重数据复制带来的高成本问题。 在没有数据仓库的时代,需…...

电商类面试问题--01Elasticsearch与Mysql数据同步问题

在实现基于关键字的搜索时,首先需要确保MySQL数据库和ES库中的数据是同步的。为了解决这个问题,可以考虑两层方案。 全量同步:全量同步是在服务初始化阶段将MySQL中的数据与ES库中的数据进行全量同步。可以在服务启动时,对ES库进…...

天线材质介绍--FPC天线

...

vue3 的 ref、 toRef 、 toRefs

1、ref: 对原始数据进行拷贝。当修改 ref 响应式数据的时候&#xff0c;模版中引用 ref 响应式数据的视图处会发生改变&#xff0c;但原始数据不会发生改变 <template><div>{{refA}}</div> </template><script lang"ts" setup> impor…...

WebRTC中 setup:actpass、active、passive

1、先看一下整个DTLS的流程 setup:actpass、active、passive就发生在Offer sdp和Anser SDP中 Offer的SDP是setup:actpass,这个是服务方&#xff1a; v0\r o- 1478416022679383738 2 IN IP4 127.0.0.1\r s-\r t0 0\r agroup:BUNDLE 0 1\r aextmap-allow-mixed\r amsid-semanti…...

ModuleNotFoundError: No module named ‘lavis‘解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…...

双指针的问题解法以及常见的leetcode例题。

目录 介绍&#xff1a; 问题1&#xff1a;双指针 剑指offer57 和为S的两个数字。 问题2&#xff1a;剑指Offer 21. 调整数组顺序使奇数位于偶数前面 问题3&#xff1a;连续奇数子串&#xff08;笔试遇到的真题&#xff09; 问题4&#xff1a;滑动窗口的最大值 介绍&#…...

python容器模块Collections

Python附带一个模块&#xff0c;它包含许多容器数据类型&#xff0c;名字叫作collections defaultdict defaultdict与dict类型不同&#xff0c;你不需要检查key是否存在&#xff0c;所以我们能这样做&#xff1a; from collections import defaultdict colours ((Yasoob, Y…...

排序算法学习记录-快速排序

快速排序 快速排序关键在于确定一个中间值&#xff0c;使得小于这个中间值的数在左边&#xff0c;大于这个中间值的数在右边。那么中间值该如何确定呢&#xff1f;有以下几种做法 首元素&#xff0c;也就是arr[l]尾元素&#xff0c;也就是arr[r]中间元素&#xff0c;也就是ar…...

安装windows版本的ros2 humble的时候,最后报错

"[rti_connext_dds_cmake_module][warning] RTI Connext DDS environment script not found (\resource\scripts\rtisetenv_x64Win64VS2017.bat). RTI Connext DDS will not be available at runtime, unless you already configured PATH manually." 意思是没找到。…...

Nginx 学习(十)高可用中间件的配置与实现

一 Keepalived热备 1 概述 调度器出现单点故障&#xff0c;如何解决?Keepalived实现了高可用集群Keepalived最初是为LVS设计的&#xff0c;专门监控各服务器节点的状态Keepalived后来加入了VRRP功能&#xff0c;防止单点故障 2 运行原理 Keepalived检测每个服务器节点状…...

[刷题记录]牛客面试笔刷TOP101

牛客笔试算法必刷TOP101系列,每日更新中~ 1.合并有序链表2023.9.3 合并两个排序的链表_牛客题霸_牛客网 (nowcoder.com) 题意大致为: 将两个链表中的元素按照从小到大的顺序合并成为一个链表. 所给予的条件: 给出的所要合并的链表都是从小到大顺序排列的. 思路: 创建一…...

降水预报之双重惩罚

在降水预报中&#xff0c;通常会出现 "双重惩罚问题 "的指标或度量包括那些常用于预报验证的指标或度量。当假阴性&#xff08;漏报降水事件&#xff09;和假阳性&#xff08;误报&#xff09;受到同等惩罚或加权时&#xff0c;就会出现双重惩罚问题&#xff0c;这在…...

一条SQL语句的执行过程(附一次两段式提交)

一条SQL语句的完整执行过程是怎样的呢&#xff1f;我们用select和update语句来举例。 注意在mysql8后&#xff0c;进入服务层后&#xff0c;取消了去查询缓存(属于Server服务层)这个步骤&#xff0c;缓存中key是SQL语句&#xff0c;value是值&#xff0c;这样其实并不会提升性…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码&#xff0c;专为学校招生场景量身打造&#xff0c;功能实用且操作便捷。 从技术架构来看&#xff0c;ThinkPHP提供稳定可靠的后台服务&#xff0c;FastAdmin加速开发流程&#xff0c;UniApp则保障小程序在多端有良好的兼…...

关于easyexcel动态下拉选问题处理

前些日子突然碰到一个问题&#xff0c;说是客户的导入文件模版想支持部分导入内容的下拉选&#xff0c;于是我就找了easyexcel官网寻找解决方案&#xff0c;并没有找到合适的方案&#xff0c;没办法只能自己动手并分享出来&#xff0c;针对Java生成Excel下拉菜单时因选项过多导…...

Vue3 PC端 UI组件库我更推荐Naive UI

一、Vue3生态现状与UI库选择的重要性 随着Vue3的稳定发布和Composition API的广泛采用&#xff0c;前端开发者面临着UI组件库的重新选择。一个好的UI库不仅能提升开发效率&#xff0c;还能确保项目的长期可维护性。本文将对比三大主流Vue3 UI库&#xff08;Naive UI、Element …...

2.2.2 ASPICE的需求分析

ASPICE的需求分析是汽车软件开发过程中至关重要的一环&#xff0c;它涉及到对需求进行详细分析、验证和确认&#xff0c;以确保软件产品能够满足客户和用户的需求。在ASPICE中&#xff0c;需求分析的关键步骤包括&#xff1a; 需求细化&#xff1a;将从需求收集阶段获得的高层需…...

Appium下载安装配置保姆教程(图文详解)

目录 一、Appium软件介绍 1.特点 2.工作原理 3.应用场景 二、环境准备 安装 Node.js 安装 Appium 安装 JDK 安装 Android SDK 安装Python及依赖包 三、安装教程 1.Node.js安装 1.1.下载Node 1.2.安装程序 1.3.配置npm仓储和缓存 1.4. 配置环境 1.5.测试Node.j…...

PLC入门【4】基本指令2(SET RST)

04 基本指令2 PLC编程第四课基本指令(2) 1、运用上接课所学的基本指令完成个简单的实例编程。 2、学习SET--置位指令 3、RST--复位指令 打开软件(FX-TRN-BEG-C)&#xff0c;从 文件 - 主画面&#xff0c;“B: 让我们学习基本的”- “B-3.控制优先程序”。 点击“梯形图编辑”…...

Go 并发编程基础:select 多路复用

select 是 Go 并发编程中非常强大的语法结构&#xff0c;它允许程序同时等待多个通道操作的完成&#xff0c;从而实现多路复用机制&#xff0c;是协程调度、超时控制、通道竞争等场景的核心工具。 一、什么是 select select 类似于 switch 语句&#xff0c;但它用于监听多个通…...