回归预测 | MATLAB实现PCA-BP主成分降维结合BP神经网络多输入单输出回归预测
回归预测 | MATLAB实现PCA-BP主成分降维结合BP神经网络多输入单输出回归预测
目录
- 回归预测 | MATLAB实现PCA-BP主成分降维结合BP神经网络多输入单输出回归预测
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览
基本介绍
MATLAB实现PCA-BP主成分降维算法结合BP神经网络多输入单输出回归预测(完整源码和数据)
1.输入多个特征,输出单个变量;
2.多输入单输出回归预测;
3.多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上;
4.评价指标MAE、MBE、R2,代码质量极高,方便学习和替换数据;
5.要求2018版本及以上。
程序设计
- 完整源码和数据获取方式:私信回复MATLAB实现PCA-BP主成分降维结合BP神经网络多输入单输出回归预测。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 导入数据
res = xlsread('data.xlsx');%% 划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%% 均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%% 相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2)^2 / norm(T_test - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718
相关文章:

回归预测 | MATLAB实现PCA-BP主成分降维结合BP神经网络多输入单输出回归预测
回归预测 | MATLAB实现PCA-BP主成分降维结合BP神经网络多输入单输出回归预测 目录 回归预测 | MATLAB实现PCA-BP主成分降维结合BP神经网络多输入单输出回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 MATLAB实现PCA-BP主成分降维算法结合BP神经网络多输入单输出回…...

Kubernetes(k8s)部署高可用多主多从的Redis集群
Kubernetes部署高可用多主多从的Redis集群 环境准备准备Kubernetes准备存储类 部署redis准备一个命名空间命令创建yaml文件创建(推荐) 准备redis配置文件准备部署statefulset的资源清单文件执行文件完成部署初始化集群 环境准备 准备Kubernetes 首先你…...

算法专题:前缀和
文章目录 Acwing:前缀和示例2845.统计趣味子数组的数目思路容易理解的写法:前缀和两层循环存在问题:超时 优化写法:两数之和思路,转换为哈希表 前缀和,就是求数组中某一段的所有元素的和。 求子数组中某一…...

bs4库爬取天气预报
Python不仅用于网站开发,数据分析,图像处理,也常用于爬虫技术方向,最近学习了解下,爬虫技术入门一般先使用bs4库,爬取天气预报简单尝试下。 第一步:首先选定目标网站地址 网上查询,…...

l8-d8 TCP并发实现
一、TCP多进程并发 1.地址快速重用 先退出服务端,后退出客户端,则服务端会出现以下错误: 地址仍在使用中 解决方法: /*地址快速重用*/ int flag1,len sizeof (int); if ( setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &a…...

编写中间件以用于 Express 应用程序
概述 中间件函数能够访问请求对象 (req)、响应对象 (res) 以及应用程序的请求/响应循环中的下一个中间件函数。下一个中间件函数通常由名为 next 的变量来表示。 中间件函数可以执行以下任务: 执行任何代码。对请求和响应对象进行更改。结束请求/响应循环。调用堆…...
【2023年数学建模国赛】D题解题思路
2023年数学建模国赛D题解题思路 为了解决问题1、问题2和问题3,我们可以采用动态规划方法来制定生产计划,考虑了不确定性因素和多种可能情况的预案集。首先,我们需要定义一些变量和符号: T T T:总的养殖周期࿰…...
python爬虫之正则表达式学习
网络安全离不开脚本和工具的开发,python很多又需要正则表达式。 这是一个很好的学习正则表达式的项目 https://github.com/ziishaned/learn-regex/blob/master/translations/README-cn.md 基本匹配 正则表达式其实就是在执行搜索时的格式,它由一些字…...

智慧能源方案:TSINGSEE青犀AI算法中台在能源行业的应用
一、方案背景 互联网、物联网、人工智能等新一代信息技术引领新一轮产业革命,加快能源革命步伐。尤其是随着人工智能技术的不断发展,AI智能检测与识别技术在能源行业的应用也越来越广泛。与此同时,国家出台多项政策,将智慧能源纳…...

达梦数据库awr报告收集
1、找出快照点snap_id与时间的对应关系 SYS.WRM$_SNAPSHOT表中记录了快照点snap_id与时间的对应关系 例如如下语句可以得出2023-09-04这一天各个时间点对应的快照点snap_id select snap_id,end_interval_time from SYS.WRM$_SNAPSHOT where end_interval_time between to…...

c语言练习43:深入理解strcmp
深入理解strcmp strcmp的主要功能是用来比较两个字符串 模拟实现strcmp 比较两个字符串对应位置上的大小 按字典序进行比较 例如: 输入:abc abc 输出:0 输入:abc ab 输出:>0的数 输入:ab abc …...

NUC980webServer开发
目录 1.RTL8189FTV驱动移植 2.wifi配置工具hostapd移植 1.openssl-1.0.2r交叉编译 2.libnl-3.2.25.tar.gz交叉编译 3.hostapd-2.9.tar.gz交叉编译 4.移植相关工具到开发板 1.RTL8189FTV驱动移植 1. 把驱动文件源码放在linux源码的drivers/net/wireless/realtek/rtlwifi/目录…...

驱动开发--day2
实现三盏灯的控制,编写应用程序测试 head.h #ifndef __HEAD_H__ #define __HEAD_H__#define LED1_MODER 0X50006000 #define LED1_ODR 0X50006014 #define LED1_RCC 0X50000A28#define LED2_MODER 0X50007000 #define LED2_ODR 0X50007014#endif mychrdev.c #inc…...

用户促活留存新方式——在APP中嵌入小游戏
随着APP同类产品的不断出现,APP开发者们面临着激烈的竞争,很多APP下载后被新的APP取代,获客成本越来越高。同时开发者还会面临用户粘性差、忠诚度低、用完即走、留存困难,商业化价值被大大缩减。 在APP中植入小游戏来提高用户活跃…...

MySQL 8.0.34(x64)安装笔记
一、背景 从MySQL 5.6到5.7,再到8.0,版本的跳跃不可谓不大。安装、配置的差别也不可谓不大,特此备忘。 二、过程 (1)获取MySQL 8.0社区版(MySQL Community Server) 从 官网 字样 “MySQL …...
物流供应商实现供应链自动化的3种方法
当前影响供应链的全球性问题(如新冠肺炎疫情)正在推动许多物流供应商重新评估和简化其流程。运输协调中的摩擦只会加剧供应商无法控制的现有延误和风险。值得庆幸的是,供应链专业人员可以通过端到端的供应链自动化消除延迟,简化与合作伙伴的沟通…...
Mysql更新时间列只改日期为指定日期不更改时间
场景 Mysql分表后同结构不同名称表之间复制数据以及Update语句只更新日期加减不更改时间: Mysql分表后同结构不同名称表之间复制数据以及Update语句只更新日期加减不更改时间_霸道流氓气质的博客-CSDN博客 上面通过如下方式实现日期列增加指定天数。 UPDATE bus…...

实时测试工具 Visual Studio 扩展 NCrunch 4.18 Crack
NCrunch Visual Studio 扩展 .NET 的终极实时测试工具 在编码时查看实时测试结果和内联指标。 下载v4.18 发布于 2023 年 7 月 17 日 跳过视频至: 代码覆盖率 指标 分布式处理 配置 发动机模式 Visual Studio 自动并发测试 NCrunch 是一个完全自动化的测试扩展&a…...
Neo4j 基本语法
一、基本语法 1、新建节点 (1)基本语法: () 代表节点 示例: CREATE (u:User {uid:970939424 }) // 节点类型为User,属性值为uid970939424CREATE (u:Round {rid:7194842697444819113 }) // 节点类型为Rou…...
docker常见面试题
1.什么是docker docker是一个容器化平台,类似于一个集装箱,集装箱与集装箱之间互不影响,docker平台就是一个软件集装箱平台,我们可以构建应用程序,将其所有的依赖打包到一个容器中,然后就很方便的可以在其…...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...

接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...

LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
Spring是如何解决Bean的循环依赖:三级缓存机制
1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间互相持有对方引用,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...