【2023年数学建模国赛】D题解题思路
2023年数学建模国赛D题解题思路
为了解决问题1、问题2和问题3,我们可以采用动态规划方法来制定生产计划,考虑了不确定性因素和多种可能情况的预案集。首先,我们需要定义一些变量和符号:
- T T T:总的养殖周期(年数)。
- S S S:每个养殖周期的季节数(假设一年有4个季节)。
- B B B:每个季节的基础母羊数量。
- R R R:每个季节的种公羊数量。
- P P P:每个季节的怀孕期母羊数量。
- D D D:每个季节的分娩期母羊数量。
- L L L:每个季节的哺乳期母羊数量。
- C C C:每个季节的育肥期羔羊数量。
- A A A:每个季节的空怀休整期母羊数量。
接下来,我们需要建立一个决策变量,即每个季节的配种数量,用 X X X表示。
为了解决问题1和问题2,我们可以制定如下的数学模型:
问题1模型:
目标函数:
最大化年化出栏羊只数量,即最大化 ∑ t = 1 T ∑ s = 1 S ( 2 D t , s + C t , s ) \sum_{t=1}^{T} \sum_{s=1}^{S} (2D_{t,s} + C_{t,s}) ∑t=1T∑s=1S(2Dt,s+Ct,s)。
约束条件:
- 每个季节的基础母羊数量不能超过14只: B t , s ≤ 14 B_{t,s} \leq 14 Bt,s≤14。
- 每个季节的种公羊数量不能超过4只: R t , s ≤ 4 R_{t,s} \leq 4 Rt,s≤4。
- 怀孕期母羊数量为分娩期母羊的85%: P t , s = 0.85 D t , s P_{t,s} = 0.85D_{t,s} Pt,s=0.85Dt,s。
- 空怀休整期母羊数量为分娩期母羊的15%: A t , s = 0.15 D t , s A_{t,s} = 0.15D_{t,s} At,s=0.15Dt,s。
- 哺乳期母羊数量等于分娩期母羊数量加上前一季节哺乳期母羊数量: L t , s = D t , s + L t − 1 , s L_{t,s} = D_{t,s} + L_{t-1,s} Lt,s=Dt,s+Lt−1,s。
- 羔羊数量等于前一季节哺乳期母羊数量: C t , s = L t − 1 , s C_{t,s} = L_{t-1,s} Ct,s=Lt−1,s。
问题2模型:
目标函数:
最大化年化出栏羊只数量,即最大化 ∑ t = 1 T ∑ s = 1 S ( 2 D t , s + C t , s ) \sum_{t=1}^{T} \sum_{s=1}^{S} (2D_{t,s} + C_{t,s}) ∑t=1T∑s=1S(2Dt,s+Ct,s)。
约束条件:
与问题1相同,不同的是我们不再限制 B t , s B_{t,s} Bt,s和 R t , s R_{t,s} Rt,s的数量,而是将它们作为决策变量,可以在每个季节自由调整。
问题3模型:
问题3考虑了不确定性因素和多种可能情况的预案集。为了解决问题3,我们可以使用动态规划方法,从第一个季节开始逐季节制定决策,以最小化整体方案的期望损失。具体步骤如下:
-
初始化:从第一个季节开始,将 B 1 , 1 B_{1,1} B1,1和 R 1 , 1 R_{1,1} R1,1作为决策变量,计算所有可能情况下的 D 1 , 1 D_{1,1} D1,1、 P 1 , 1 P_{1,1} P1,1、 L 1 , 1 L_{1,1} L1,1和 C 1 , 1 C_{1,1} C1,1。
-
逐季节迭代:对于每个季节 s s s,根据上一季节的结果和不确定性因素计算 B t , s B_{t,s} Bt,s和 R t , s R_{t,s} Rt,s,然后计算 D t , s D_{t,s} Dt,s、 P t , s P_{t,s} Pt,s、 L t , s L_{t,s} Lt,s和 C t , s C_{t,s} Ct,s。在每个季节中,选择使得期望损失最小的决策。
-
计算期望损失:在每个季节中,根据不同情况下的羊栏使用情况,计算期望损失。
-
终止条件:重复步骤2和步骤3,直到养殖周期结束。
最终,得到的生产计划将考虑了不确定性因素,并在每个季节根据实际情况作出最佳决策,以最小化期望损失。这个模型可以通过计算机程序进行求解,以得到最优的生产计划。
相关文章:
【2023年数学建模国赛】D题解题思路
2023年数学建模国赛D题解题思路 为了解决问题1、问题2和问题3,我们可以采用动态规划方法来制定生产计划,考虑了不确定性因素和多种可能情况的预案集。首先,我们需要定义一些变量和符号: T T T:总的养殖周期࿰…...
python爬虫之正则表达式学习
网络安全离不开脚本和工具的开发,python很多又需要正则表达式。 这是一个很好的学习正则表达式的项目 https://github.com/ziishaned/learn-regex/blob/master/translations/README-cn.md 基本匹配 正则表达式其实就是在执行搜索时的格式,它由一些字…...

智慧能源方案:TSINGSEE青犀AI算法中台在能源行业的应用
一、方案背景 互联网、物联网、人工智能等新一代信息技术引领新一轮产业革命,加快能源革命步伐。尤其是随着人工智能技术的不断发展,AI智能检测与识别技术在能源行业的应用也越来越广泛。与此同时,国家出台多项政策,将智慧能源纳…...

达梦数据库awr报告收集
1、找出快照点snap_id与时间的对应关系 SYS.WRM$_SNAPSHOT表中记录了快照点snap_id与时间的对应关系 例如如下语句可以得出2023-09-04这一天各个时间点对应的快照点snap_id select snap_id,end_interval_time from SYS.WRM$_SNAPSHOT where end_interval_time between to…...

c语言练习43:深入理解strcmp
深入理解strcmp strcmp的主要功能是用来比较两个字符串 模拟实现strcmp 比较两个字符串对应位置上的大小 按字典序进行比较 例如: 输入:abc abc 输出:0 输入:abc ab 输出:>0的数 输入:ab abc …...

NUC980webServer开发
目录 1.RTL8189FTV驱动移植 2.wifi配置工具hostapd移植 1.openssl-1.0.2r交叉编译 2.libnl-3.2.25.tar.gz交叉编译 3.hostapd-2.9.tar.gz交叉编译 4.移植相关工具到开发板 1.RTL8189FTV驱动移植 1. 把驱动文件源码放在linux源码的drivers/net/wireless/realtek/rtlwifi/目录…...

驱动开发--day2
实现三盏灯的控制,编写应用程序测试 head.h #ifndef __HEAD_H__ #define __HEAD_H__#define LED1_MODER 0X50006000 #define LED1_ODR 0X50006014 #define LED1_RCC 0X50000A28#define LED2_MODER 0X50007000 #define LED2_ODR 0X50007014#endif mychrdev.c #inc…...

用户促活留存新方式——在APP中嵌入小游戏
随着APP同类产品的不断出现,APP开发者们面临着激烈的竞争,很多APP下载后被新的APP取代,获客成本越来越高。同时开发者还会面临用户粘性差、忠诚度低、用完即走、留存困难,商业化价值被大大缩减。 在APP中植入小游戏来提高用户活跃…...

MySQL 8.0.34(x64)安装笔记
一、背景 从MySQL 5.6到5.7,再到8.0,版本的跳跃不可谓不大。安装、配置的差别也不可谓不大,特此备忘。 二、过程 (1)获取MySQL 8.0社区版(MySQL Community Server) 从 官网 字样 “MySQL …...
物流供应商实现供应链自动化的3种方法
当前影响供应链的全球性问题(如新冠肺炎疫情)正在推动许多物流供应商重新评估和简化其流程。运输协调中的摩擦只会加剧供应商无法控制的现有延误和风险。值得庆幸的是,供应链专业人员可以通过端到端的供应链自动化消除延迟,简化与合作伙伴的沟通…...
Mysql更新时间列只改日期为指定日期不更改时间
场景 Mysql分表后同结构不同名称表之间复制数据以及Update语句只更新日期加减不更改时间: Mysql分表后同结构不同名称表之间复制数据以及Update语句只更新日期加减不更改时间_霸道流氓气质的博客-CSDN博客 上面通过如下方式实现日期列增加指定天数。 UPDATE bus…...

实时测试工具 Visual Studio 扩展 NCrunch 4.18 Crack
NCrunch Visual Studio 扩展 .NET 的终极实时测试工具 在编码时查看实时测试结果和内联指标。 下载v4.18 发布于 2023 年 7 月 17 日 跳过视频至: 代码覆盖率 指标 分布式处理 配置 发动机模式 Visual Studio 自动并发测试 NCrunch 是一个完全自动化的测试扩展&a…...
Neo4j 基本语法
一、基本语法 1、新建节点 (1)基本语法: () 代表节点 示例: CREATE (u:User {uid:970939424 }) // 节点类型为User,属性值为uid970939424CREATE (u:Round {rid:7194842697444819113 }) // 节点类型为Rou…...
docker常见面试题
1.什么是docker docker是一个容器化平台,类似于一个集装箱,集装箱与集装箱之间互不影响,docker平台就是一个软件集装箱平台,我们可以构建应用程序,将其所有的依赖打包到一个容器中,然后就很方便的可以在其…...

静态路由:配置和使用详解
文章目录 一、静态路由的配置和使用详解1. 配置要点1.1 点到点接口配置1.2 以太网接口配置 2. 默认路由3. 静态路由的配置命令4. 静态路由实现路由备份和负载分担 二、静态路由的优先级和比较1. 静态路由的优先级设置2. 静态路由与动态路由的比较2.1 静态路由优缺点2.2 动态路由…...
玩转Mysql系列 - 第15篇:详解视图
这是Mysql系列第15篇。 环境:mysql5.7.25,cmd命令中进行演示。 需求背景 电商公司领导说:给我统计一下:当月订单总金额、订单量、男女订单占比等信息,我们啪啦啪啦写了一堆很复杂的sql,然后发给领导。 …...
0065__git fetch, git pull, git merge, git rebase
git fetch, git pull, git merge, git rebase_git pull和merge_送你一朵小莲花的博客-CSDN博客...
AJAX学习笔记4解决乱码问题
AJAX学习笔记3练习_biubiubiu0706的博客-CSDN博客 在Tomcat10来说,AJAX GET或者POST接收响应都不存在乱码问题 对于Tomcat9来说 前端测试代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>测试A…...
【23种设计模式】享元模式【⭐】
个人主页:金鳞踏雨 个人简介:大家好,我是金鳞,一个初出茅庐的Java小白 目前状况:22届普通本科毕业生,几经波折了,现在任职于一家国内大型知名日化公司,从事Java开发工作 我的博客&am…...
语音信号的仿真原理
利用MATLAB对语音信号进行分析和处理,采集语音信号后,利用MATLAB软件 平台进行频谱分析;并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频 谱分析,设计合适的滤波器滤除噪声,恢复原信号。语音信…...

idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...

C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...

边缘计算医疗风险自查APP开发方案
核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...

微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

【JVM】Java虚拟机(二)——垃圾回收
目录 一、如何判断对象可以回收 (一)引用计数法 (二)可达性分析算法 二、垃圾回收算法 (一)标记清除 (二)标记整理 (三)复制 (四ÿ…...