生成订单30分钟未支付,则自动取消,该怎么实现?
今天给大家上一盘硬菜,并且是支付中非常重要的一个技术解决方案,有这块业务的同学注意自己试一把了哈!

在开发中,往往会遇到一些关于延时任务的需求。例如
生成订单30分钟未支付,则自动取消
生成订单60秒后,给用户发短信
对上述的任务,我们给一个专业的名字来形容,那就是延时任务。
那么这里就会产生一个问题,这个延时任务和定时任务的区别究竟在哪里呢?一共有如下几点区别
定时任务有明确的触发时间,延时任务没有
定时任务有执行周期,而延时任务在某事件触发后一段时间内执行,没有执行周期
定时任务一般执行的是批处理操作是多个任务,而延时任务一般是单个任务
下面,我们以判断订单是否超时为例,进行方案分析
方案分析
(1)数据库轮询
思路
该方案通常是在小型项目中使用,即通过一个线程定时的去扫描数据库,通过订单时间来判断是否有超时的订单,然后进行update或delete等操作
实现
当年早期是用quartz来实现的(实习那会的事),简单介绍一下
maven项目引入一个依赖如下所示
下面展示一些 内联代码片。
<dependency><groupId>org.quartz-scheduler</groupId><artifactId>quartz</artifactId><version>2.2.2</version>
</dependency>
调用Demo类MyJob如下所示
public class MyJob implements Job {public void execute(JobExecutionContext context)throws JobExecutionException {System.out.println("要去数据库扫描啦。。。");}public static void main(String[] args) throws Exception {// 创建任务JobDetail jobDetail = JobBuilder.newJob(MyJob.class).withIdentity("job1", "group1").build();// 创建触发器 每3秒钟执行一次Trigger trigger = TriggerBuilder.newTrigger().withIdentity("trigger1", "group3").withSchedule(SimpleScheduleBuilder.simpleSchedule().withIntervalInSeconds(3).repeatForever()).build();Scheduler scheduler = new StdSchedulerFactory().getScheduler();// 将任务及其触发器放入调度器scheduler.scheduleJob(jobDetail, trigger);// 调度器开始调度任务scheduler.start();}
}
运行代码,可发现每隔3秒,输出如下
要去数据库扫描啦。。。
优缺点
优点:简单易行,支持集群操作
缺点:
(1)对服务器内存消耗大
(2)存在延迟,比如你每隔3分钟扫描一次,那最坏的延迟时间就是3分钟
(3)假设你的订单有几千万条,每隔几分钟这样扫描一次,数据库损耗极大
(2)JDK的延迟队列
思路
该方案是利用JDK自带的DelayQueue来实现,这是一个无界阻塞队列,该队列只有在延迟期满的时候才能从中获取元素,放入DelayQueue中的对象,是必须实现Delayed接口的。
DelayedQueue实现工作流程如下图所示

Poll():获取并移除队列的超时元素,没有则返回空
take():获取并移除队列的超时元素,如果没有则wait当前线程,直到有元素满足超时条件,返回结果。
实现
定义一个类OrderDelay实现Delayed,代码如下
public class OrderDelay implements Delayed {private String orderId;private long timeout;OrderDelay(String orderId, long timeout) {this.orderId = orderId;this.timeout = timeout + System.nanoTime();}public int compareTo(Delayed other) {if (other == this)return 0;OrderDelay t = (OrderDelay) other;long d = (getDelay(TimeUnit.NANOSECONDS) - t.getDelay(TimeUnit.NANOSECONDS));return (d == 0) ? 0 : ((d < 0) ? -1 : 1);}// 返回距离你自定义的超时时间还有多少public long getDelay(TimeUnit unit) {return unit.convert(timeout - System.nanoTime(),TimeUnit.NANOSECONDS);}void print() {System.out.println(orderId+"编号的订单要删除啦。。。。");}
}
运行的测试Demo为,我们设定延迟时间为3秒
public class DelayQueueDemo {public static void main(String[] args) { List<String> list = new ArrayList<String>(); list.add("00000001"); list.add("00000002"); list.add("00000003"); list.add("00000004"); list.add("00000005"); DelayQueue<OrderDelay> queue = newDelayQueue<OrderDelay>(); long start = System.currentTimeMillis(); for(int i = 0;i<5;i++){ //延迟三秒取出queue.put(new OrderDelay(list.get(i), TimeUnit.NANOSECONDS.convert(3,TimeUnit.SECONDS))); try { queue.take().print(); System.out.println("After " + (System.currentTimeMillis()-start) + " MilliSeconds"); } catch (InterruptedException e) {} } }
}
输出如下
00000001编号的订单要删除啦。。。。
After 3003 MilliSeconds
00000002编号的订单要删除啦。。。。
After 6006 MilliSeconds
00000003编号的订单要删除啦。。。。
After 9006 MilliSeconds
00000004编号的订单要删除啦。。。。
After 12008 MilliSeconds
00000005编号的订单要删除啦。。。。
After 15009 MilliSeconds
可以看到都是延迟3秒,订单被删除
优缺点
优点:效率高,任务触发时间延迟低。
缺点:
(1)服务器重启后,数据全部消失,怕宕机
(2)集群扩展相当麻烦
(3)因为内存条件限制的原因,比如下单未付款的订单数太多,那么很容易就出现
OOM异常
(4)代码复杂度较高
(3)时间轮算法
思路
先上一张时间轮的图(这图到处都是啦)

时间轮算法可以类比于时钟,如上图箭头(指针)按某一个方向按固定频率轮动,每一次跳动称为一个 tick。
这样可以看出定时轮由个3个重要的属性参数
ticksPerWheel(一轮的tick数)
tickDuration(一个tick的持续时间)
timeUnit(时间单位)
例如当ticksPerWheel=60,tickDuration=1,timeUnit=秒,这就和现实中的始终的秒针走动完全类似了。
如果当前指针指在1上面,我有一个任务需要4秒以后执行,那么这个执行的线程回调或者消息将会被放在5上。那如果需要在20秒之后执行怎么办,由于这个环形结构槽数只到8,如果要20秒,指针需要多转2圈。位置是在2圈之后的5上面(20 % 8 + 1)
实现
我们用Netty的HashedWheelTimer来实现
给Pom加上下面的依赖
<dependency><groupId>io.netty</groupId><artifactId>netty-all</artifactId><version>4.1.24.Final</version>
</dependency>
测试代码HashedWheelTimerTest如下所示
public class HashedWheelTimerTest {static class MyTimerTask implements TimerTask{boolean flag;public MyTimerTask(boolean flag){this.flag = flag;}public void run(Timeout timeout) throws Exception {System.out.println("要去数据库删除订单了。。。。");this.flag =false;}}public static void main(String[] argv) {MyTimerTask timerTask = new MyTimerTask(true);Timer timer = new HashedWheelTimer();timer.newTimeout(timerTask, 5, TimeUnit.SECONDS);int i = 1;while(timerTask.flag){try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}System.out.println(i+"秒过去了");i++;}}
}
输出如下
1秒过去了
2秒过去了
3秒过去了
4秒过去了
5秒过去了
要去数据库删除订单了。。。。
6秒过去了
优缺点
优点:效率高,任务触发时间延迟时间比delayQueue低,代码复杂度比delayQueue低。
缺点:
(1)服务器重启后,数据全部消失,怕宕机
(2)集群扩展相当麻烦
(3)因为内存条件限制的原因,比如下单未付款的订单数太多,那么很容易就出现OOM异常
(4)redis缓存
思路一
利用redis的zset,zset是一个有序集合,每一个元素(member)都关联了一个score,通过score排序来取集合中的值
添加元素:ZADD key score member [[score member] [score member] …]按顺序查询元素:ZRANGE key start stop [WITHSCORES]查询元素score:ZSCORE key member移除元素:ZREM key member [member …]
测试如下
添加单个元素
redis> ZADD page_rank 10 google.com
(integer) 1添加多个元素
redis> ZADD page_rank 9 baidu.com 8 bing.com
(integer) 2redis> ZRANGE page_rank 0 -1 WITHSCORES
1) "bing.com"
2) "8"
3) "baidu.com"
4) "9"
5) "google.com"
6) "10"查询元素的score值
redis> ZSCORE page_rank bing.com
"8"移除单个元素
redis> ZREM page_rank google.com
(integer) 1redis> ZRANGE page_rank 0 -1 WITHSCORES
1) "bing.com"
2) "8"
3) "baidu.com"
4) "9"
那么如何实现呢?我们将订单超时时间戳与订单号分别设置为score和member,系统扫描第一个元素判断是否超时,具体如下图所示

实现一
public class AppTest {private static final String ADDR = "127.0.0.1";private static final int PORT = 6379;private static JedisPool jedisPool = new JedisPool(ADDR, PORT);public static Jedis getJedis() {return jedisPool.getResource();}//生产者,生成5个订单放进去public void productionDelayMessage(){for(int i=0;i<5;i++){//延迟3秒Calendar cal1 = Calendar.getInstance();cal1.add(Calendar.SECOND, 3);int second3later = (int) (cal1.getTimeInMillis() / 1000);AppTest.getJedis().zadd("OrderId",second3later,"OID0000001"+i);System.out.println(System.currentTimeMillis()+"ms:redis生成了一个订单任务:订单ID为"+"OID0000001"+i);}}//消费者,取订单public void consumerDelayMessage(){Jedis jedis = AppTest.getJedis();while(true){Set<Tuple> items = jedis.zrangeWithScores("OrderId", 0, 1);if(items == null || items.isEmpty()){System.out.println("当前没有等待的任务");try {Thread.sleep(500);} catch (InterruptedException e) {e.printStackTrace();}continue;}int score = (int) ((Tuple)items.toArray()[0]).getScore();Calendar cal = Calendar.getInstance();int nowSecond = (int) (cal.getTimeInMillis() / 1000);if(nowSecond >= score){String orderId = ((Tuple)items.toArray()[0]).getElement();jedis.zrem("OrderId", orderId);System.out.println(System.currentTimeMillis() +"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);}}}public static void main(String[] args) {AppTest appTest =new AppTest();appTest.productionDelayMessage();appTest.consumerDelayMessage();}
}
此时对应输出如下

可以看到,几乎都是3秒之后,消费订单。
然而,这一版存在一个致命的硬伤,在高并发条件下,多消费者会取到同一个订单号,我们上测试代码ThreadTest
public class ThreadTest {private static final int threadNum = 10;private static CountDownLatch cdl = newCountDownLatch(threadNum);static class DelayMessage implements Runnable{public void run() {try {cdl.await();} catch (InterruptedException e) {e.printStackTrace();}AppTest appTest =new AppTest();appTest.consumerDelayMessage();}}public static void main(String[] args) {AppTest appTest =new AppTest();appTest.productionDelayMessage();for(int i=0;i<threadNum;i++){new Thread(new DelayMessage()).start();cdl.countDown();}}
}`
输出如下所示

显然,出现了多个线程消费同一个资源的情况。
解决方案
(1)用分布式锁,但是用分布式锁,性能下降了,该方案不细说。
(2)对ZREM的返回值进行判断,只有大于0的时候,才消费数据,于是将consumerDelayMessage()方法里的
if(nowSecond >= score){String orderId = ((Tuple)items.toArray()[0]).getElement();jedis.zrem("OrderId", orderId);System.out.println(System.currentTimeMillis()+"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);
}
修改为
if(nowSecond >= score){String orderId = ((Tuple)items.toArray()[0]).getElement();Long num = jedis.zrem("OrderId", orderId);if( num != null && num>0){System.out.println(System.currentTimeMillis()+"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);}
}
在这种修改后,重新运行ThreadTest类,发现输出正常了
思路二
该方案使用redis的Keyspace Notifications,中文翻译就是键空间机制,就是利用该机制可以在key失效之后,提供一个回调,实际上是redis会给客户端发送一个消息。是需要redis版本2.8以上。
实现二
在redis.conf中,加入一条配置
notify-keyspace-events Ex
运行代码如下
public class RedisTest {private static final String ADDR = "127.0.0.1";private static final int PORT = 6379;private static JedisPool jedis = new JedisPool(ADDR, PORT);private static RedisSub sub = new RedisSub();public static void init() {new Thread(new Runnable() {public void run() {jedis.getResource().subscribe(sub, "__keyevent@0__:expired");}}).start();}public static void main(String[] args) throws InterruptedException {init();for(int i =0;i<10;i++){String orderId = "OID000000"+i;jedis.getResource().setex(orderId, 3, orderId);System.out.println(System.currentTimeMillis()+"ms:"+orderId+"订单生成");}}static class RedisSub extends JedisPubSub {public void onMessage(String channel, String message) {System.out.println(System.currentTimeMillis()+"ms:"+message+"订单取消");}}
}
输出如下

可以明显看到3秒过后,订单取消了
ps:redis的pub/sub机制存在一个硬伤,
Redis的发布/订阅目前是即发即弃(fire and forget)模式的,因此无法实现事件的可靠通知。也就是说,如果发布/订阅的客户端断链之后又重连,则在客户端断链期间的所有事件都丢失了。
因此,方案二不是太推荐。当然,如果你对可靠性要求不高,可以使用。
优缺点
优点:
(1)由于使用Redis作为消息通道,消息都存储在Redis中。如果发送程序或者任务处理程序挂了,重启之后,还有重新处理数据的可能性。
(2)做集群扩展相当方便
(3)时间准确度高
缺点:
(1)需要额外进行redis维护
(5)使用消息队列
我们可以采用rabbitMQ的延时队列。RabbitMQ具有以下两个特性,可以实现延迟队列
RabbitMQ可以针对Queue和Message设置 x-message-tt,来控制消息的生存时间,如果超时,则消息变为dead letter
lRabbitMQ的Queue可以配置x-dead-letter-exchange 和x-dead-letter-routing-key(可选)两个参数,用来控制队列内出现了deadletter,则按照这两个参数重新路由。
结合以上两个特性,就可以模拟出延迟消息的功能,具体的,我改天再写一篇文章,这里再讲下去,篇幅太长。
优缺点
优点:
高效,可以利用rabbitmq的分布式特性轻易的进行横向扩展,消息支持持久化增加了可靠性。
缺点:
本身的易用度要依赖于rabbitMq的运维.因为要引用rabbitMq,所以复杂度和成本变高
文章来源:网络 版权归原作者所有
上文内容不用于商业目的,如涉及知识产权问题,请权利人联系小编,我们将立即处理
相关文章:
生成订单30分钟未支付,则自动取消,该怎么实现?
今天给大家上一盘硬菜,并且是支付中非常重要的一个技术解决方案,有这块业务的同学注意自己试一把了哈! 在开发中,往往会遇到一些关于延时任务的需求。例如 生成订单30分钟未支付,则自动取消 生成订单60秒后,给用户…...
WebGIS外包开发流程
WebGIS开发流程需要综合考虑前端和后端开发、地理信息数据处理、用户需求和安全性等多个方面。成功的WebGIS应用程序需要不断地进行更新和维护,以适应变化的需求和技术。WebGIS开发是一个复杂的过程,通常包括以下主要步骤。北京木奇移动技术有限公司&…...
pytorch学习——LSTM和GRU
参考书籍:https://zh-v2.d2l.ai/chapter_recurrent-modern/lstm.html 参考论文: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 简介: LSTM(长短期记忆网络)和GRU(门控循环单元)…...
【Python】Python 利用模块实现单例模式
Python 利用模块实现单例模式 在GOF的23种设计模式中,单例是最常使用的模式,通过单例模式可以保证系统中 一个类只有一个实例而且该实例易于被外界访问,从而方便对实例个数的控制并节约系统资 源。每当大家想要实现一个名为XxxMangcr的类时&…...
雅思写作 三小时浓缩学习顾家北 笔记总结(四)
目录 The company should provide maternity leave and other assistance to female employees with children. Community redevelopment provides opportunities for offenders to acquire vocational skills. The law should classify drunk driving as a criminal offens…...
深入学习与探索:高级数据结构与复杂算法
文章目录 学习高级数据结构B树:数据库引擎的骨干线段树:高效的区间查询Trie树:高效的字符串检索 探索复杂算法领域图算法:解决复杂网络问题字符串匹配算法:处理文本搜索近似算法:在NP难题上取得近似解 结论…...
CV:计算机视觉CV运用领域
计算机视觉是一项涉及大量算法和技术的跨学科领域,已经在众多领域得到广泛的应用。以下是计算机视觉的一些主要应用领域: 图像处理和图像分析:计算机视觉技术可以用于图像处理和图像分析,识别和检测特定的图像特征,例如…...
开源机密计算平台:蓬莱-OpenHarmony
演讲嘉宾 | 杜 东 回顾整理 | 廖 涛 排版校对 | 李萍萍 嘉宾简介 杜东,上海交通大学助理研究员。中国计算机学会CCF会员,ACM会员。研究兴趣为操作系统与体系结构、服务器无感知(Serverless)计算、系统安全。在包括ASPLOS、ISC…...
大一大二一心学算法的利弊
学习算法是现代计算机科学和软件工程领域中的重要组成部分。它们是解决复杂问题、优化资源利用以及提高效率的关键。学习算法的过程可以帮助培养系统性思维、分析问题能力和创造性解决方案的能力。然而,学习算法也有一些利弊,我们将在下文中详细探讨。 …...
c#using关键字的作用
https://blog.csdn.net/Mona_Zhao/article/details/91363446 using关键字的三种作用: 1. 引用命名空间; 2. 为命名空间或者类型创建别名; 3. 使用using语句。 (1)引用命名空间 类似于c和c的#include<>, pyt…...
只依赖OPENCV的工作服安全帽检测YOLOV8S
工地安全帽工作服检测Y8S,采用YOLOV8S训练模型,然后使用OPENCV的DNN调用,彻底拜托PYTORCH依赖,可以在C,PYTHON,ANDROID上跑。附件是C生成的效果测试(只需解压将图片或者视频放入VIDEOS文件夹,文件夹没图片或…...
MFC|选择获取文件路径
参考:mfc按钮选择文件或者文件夹(https://blog.csdn.net/qq_39433050/article/details/130261518) 点击按钮槽函数,选择文件 void CMFCStartGrabDlg::OnBnClickedSelectfile() {// TODO: Add your control notification handler…...
实时操作系统Freertos开坑学习笔记:(七):队列
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、队列是什么?而在freertos中,队列是什么呢?①如果要进行中断、任务的交流,那我用全局变量行吗?②…...
专业游戏翻译公司怎么选择比较合适
近年来,游戏行业持续繁荣,市场需求也在不断扩大,其中游戏翻译的需求越来越旺盛。无论是引进游戏还是让游戏走向国际市场,都需要专业的翻译公司来帮忙。那么,怎么选择合适的游戏翻译公司呢?让我们一起来看看…...
阿里云Maven和Gradle仓库最新配置
文章目录 一、简介二、仓库地址三、如何配置1、Maven配置2、Gradle配置 一、简介 阿里云云效 Maven 是什么? 阿里云Maven中央仓库为 阿里云云效 提供的公共代理仓库,帮助研发人员提高研发生产效率,使用阿里云Maven中央仓库作为下载源&am…...
尚硅谷大数据项目《在线教育之离线数仓》笔记007
视频地址:尚硅谷大数据项目《在线教育之离线数仓》_哔哩哔哩_bilibili 目录 第12章 报表数据导出 P112 01、创建数据表 02、修改datax的jar包 03、ads_traffic_stats_by_source.json文件 P113 P114 P115 P116 P117 P118 P119 P120 P121 P122【122_在…...
python考研志愿填报模拟系统vue
本系统提供给管理员对学生、院校、研究生信息、专业信息、学院信息等诸多功能进行管理。本系统对于学生输入的任何信息都进行了一定的验证,为管理员操作提高了效率,也使其数据安全性得到了保障。本考研志愿填报模拟系统以Django作为框架,B/S模…...
【LeetCode-面试经典150题-day20】
目录 70.爬楼梯 198.打家劫舍 139.单词拆分 322.零钱兑换 300.最长递增子序列 70.爬楼梯 题意: 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢? 提示: 1 < n < …...
回归与聚类算法系列②:线性回归
目录 1、定义与公式 2、应用场景 3、特征与目标的关系分析 线性回归的损失函数 为什么需要损失函数 损失函数 ⭐如何减少损失 4、优化算法 正规方程 梯度下降 优化动态图 偏导 正规方程和梯度下降比较 5、优化方法GD、SGD、SAG 6、⭐线性回归API 7、实例&#…...
springBoot:redis使用
需求:查询酒店房间列表 1、引入依赖 <!--redis--><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId></dependency> 2、配置yml文件 server:port: 80…...
微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...
cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...
LRU 缓存机制详解与实现(Java版) + 力扣解决
📌 LRU 缓存机制详解与实现(Java版) 一、📖 问题背景 在日常开发中,我们经常会使用 缓存(Cache) 来提升性能。但由于内存有限,缓存不可能无限增长,于是需要策略决定&am…...
uniapp 字符包含的相关方法
在uniapp中,如果你想检查一个字符串是否包含另一个子字符串,你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的,但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...
Caliper 配置文件解析:fisco-bcos.json
config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...
