当前位置: 首页 > news >正文

pytorch学习——LSTM和GRU

参考书籍:https://zh-v2.d2l.ai/chapter_recurrent-modern/lstm.html

参考论文: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

简介:

        LSTM(长短期记忆网络)和GRU(门控循环单元)是两种常用的改进型循环神经网络(RNN),用于解决传统RNN中的长期依赖性和梯度消失/梯度爆炸等问题。

        LSTM和GRU都通过引入门控机制和记忆单元来增强RNN的建模能力,并有效地捕捉长期依赖性。它们具有类似的结构,但在门控机制的设计和计算复杂度上有所不同。

一.LSTM长短期记忆网络(long short-term memory)

        LSTM(Long Short-Term Memory)是一种常用的循环神经网络(RNN)变体,旨在解决传统RNN在处理长期依赖性时容易出现的梯度消失或梯度爆炸问题。LSTM通过引入门控机制,有效地捕捉和记忆时间序列数据中的长期依赖关系。

 

 

 

        LSTM的核心思想是使用称为"门"的结构来控制信息的流动和记忆的更新。下面是LSTM的主要组成部分   

  1. 输入门(Input Gate):输入门决定哪些信息将被传递到细胞状态(Cell State)。它使用一个Sigmoid激活函数来控制输入的权重,以及一个tanh激活函数来处理输入的值。输入门的计算公式如下:
    i_t = sigmoid(W_i * x_t + U_i * h_(t-1) + b_i)
    ```
    ````
    g_t = tanh(W_g * x_t + U_g * h_(t-1) + b_g)
    ````
  2. 遗忘门(Forget Gate):遗忘门决定元状态中哪些信息应该被遗忘。它通过一个Sigmoid激活函数来控制元状态中的旧信息的权重。遗忘门的计算公式如下:

    f_t = sigmoid(W_f * x_t + U_f * h_(t-1) + b_f)
    
  3. 元状态更新(Cell State Update):元状态通过将输入门和遗忘门的结果相乘,并添加新的候选值(由tanh激活函数计算得到)来更新。元状态更新的计算公式如下:

    C_t = f_t * C_(t-1) + i_t * g_t
    
  4. 输出门(Output Gate):输出门决定从元状态中输出的值。它使用一个Sigmoid激活函数来控制输出的权重,并使用tanh激活函数处理元状态。输出门的计算公式如下:

    o_t = sigmoid(W_o * x_t + U_o * h_(t-1) + b_o)
    
    h_t = o_t * tanh(C_t)
    

        在上述公式中,x_t表示当前时间步骤的输入,h_(t-1)表示上一个时间步骤的隐藏状态,i_t、f_t、o_t分别表示输入门、遗忘门和输出门的输出,g_t表示候选值,C_t表示元状态,h_t表示当前时间步骤的隐藏状态。

        通过使用输入门、遗忘门和输出门,LSTM能够控制信息流动和记忆的更新,有效地捕捉和处理时间序列数据中的长期依赖关系。这使得LSTM在许多任务中表现出色,如语言模型、机器翻译、语音识别等。

二.GRU(Gate Recurrent Unit)门控循环单元

参考链接:人人都能看懂的GRU - 知乎

        GRU(Gate Recurrent Unit)是循环神经网络(Recurrent Neural Network, RNN)的一种。和LSTM(Long-Short Term Memory)一样,也是为了解决长期记忆和反向传播中的梯度等问题而提出来的。

GRU和LSTM在很多情况下实际表现上相差无几,那么为什么我们要使用新人GRU(2014年提出)而不是相对经受了更多考验的LSTM(1997提出)呢。

下图1-1引用论文中的一段话来说明GRU的优势所在。

      

简单译文:我们在我们的实验中选择GRU是因为它的实验效果与LSTM相似,但是更易于计算。

 

相比LSTM,使用GRU能够达到相当的效果,并且相比之下更容易进行训练,能够很大程度上提高训练效率,因此很多时候会更倾向于使用GRU。

OK,那么为什么说GRU更容易进行训练呢,下面开始介绍一下GRU的内部结构。

2.1GRU的输入和输出结构

 

2.2GRU的内部结构

        

 

 

 

 

相关文章:

pytorch学习——LSTM和GRU

参考书籍:https://zh-v2.d2l.ai/chapter_recurrent-modern/lstm.html 参考论文: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 简介: LSTM(长短期记忆网络)和GRU(门控循环单元)…...

【Python】Python 利用模块实现单例模式

Python 利用模块实现单例模式 在GOF的23种设计模式中,单例是最常使用的模式,通过单例模式可以保证系统中 一个类只有一个实例而且该实例易于被外界访问,从而方便对实例个数的控制并节约系统资 源。每当大家想要实现一个名为XxxMangcr的类时&…...

雅思写作 三小时浓缩学习顾家北 笔记总结(四)

目录 The company should provide maternity leave and other assistance to female employees with children. Community redevelopment provides opportunities for offenders to acquire vocational skills. The law should classify drunk driving as a criminal offens…...

深入学习与探索:高级数据结构与复杂算法

文章目录 学习高级数据结构B树:数据库引擎的骨干线段树:高效的区间查询Trie树:高效的字符串检索 探索复杂算法领域图算法:解决复杂网络问题字符串匹配算法:处理文本搜索近似算法:在NP难题上取得近似解 结论…...

CV:计算机视觉CV运用领域

计算机视觉是一项涉及大量算法和技术的跨学科领域,已经在众多领域得到广泛的应用。以下是计算机视觉的一些主要应用领域: 图像处理和图像分析:计算机视觉技术可以用于图像处理和图像分析,识别和检测特定的图像特征,例如…...

开源机密计算平台:蓬莱-OpenHarmony

演讲嘉宾 | 杜 东 回顾整理 | 廖 涛 排版校对 | 李萍萍 嘉宾简介 杜东,上海交通大学助理研究员。中国计算机学会CCF会员,ACM会员。研究兴趣为操作系统与体系结构、服务器无感知(Serverless)计算、系统安全。在包括ASPLOS、ISC…...

大一大二一心学算法的利弊

学习算法是现代计算机科学和软件工程领域中的重要组成部分。它们是解决复杂问题、优化资源利用以及提高效率的关键。学习算法的过程可以帮助培养系统性思维、分析问题能力和创造性解决方案的能力。然而,学习算法也有一些利弊,我们将在下文中详细探讨。 …...

c#using关键字的作用

https://blog.csdn.net/Mona_Zhao/article/details/91363446 using关键字的三种作用&#xff1a; 1. 引用命名空间&#xff1b; 2. 为命名空间或者类型创建别名&#xff1b; 3. 使用using语句。 &#xff08;1&#xff09;引用命名空间 类似于c和c的#include<>, pyt…...

只依赖OPENCV的工作服安全帽检测YOLOV8S

工地安全帽工作服检测Y8S&#xff0c;采用YOLOV8S训练模型&#xff0c;然后使用OPENCV的DNN调用&#xff0c;彻底拜托PYTORCH依赖&#xff0c;可以在C,PYTHON,ANDROID上跑。附件是C生成的效果测试&#xff08;只需解压将图片或者视频放入VIDEOS文件夹&#xff0c;文件夹没图片或…...

MFC|选择获取文件路径

参考&#xff1a;mfc按钮选择文件或者文件夹&#xff08;https://blog.csdn.net/qq_39433050/article/details/130261518&#xff09; 点击按钮槽函数&#xff0c;选择文件 void CMFCStartGrabDlg::OnBnClickedSelectfile() {// TODO: Add your control notification handler…...

实时操作系统Freertos开坑学习笔记:(七):队列

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、队列是什么&#xff1f;而在freertos中&#xff0c;队列是什么呢&#xff1f;①如果要进行中断、任务的交流&#xff0c;那我用全局变量行吗&#xff1f;②…...

专业游戏翻译公司怎么选择比较合适

近年来&#xff0c;游戏行业持续繁荣&#xff0c;市场需求也在不断扩大&#xff0c;其中游戏翻译的需求越来越旺盛。无论是引进游戏还是让游戏走向国际市场&#xff0c;都需要专业的翻译公司来帮忙。那么&#xff0c;怎么选择合适的游戏翻译公司呢&#xff1f;让我们一起来看看…...

阿里云Maven和Gradle仓库最新配置

文章目录 一、简介二、仓库地址三、如何配置1、Maven配置2、Gradle配置 一、简介 阿里云云效 Maven 是什么&#xff1f;    阿里云Maven中央仓库为 阿里云云效 提供的公共代理仓库&#xff0c;帮助研发人员提高研发生产效率&#xff0c;使用阿里云Maven中央仓库作为下载源&am…...

尚硅谷大数据项目《在线教育之离线数仓》笔记007

视频地址&#xff1a;尚硅谷大数据项目《在线教育之离线数仓》_哔哩哔哩_bilibili 目录 第12章 报表数据导出 P112 01、创建数据表 02、修改datax的jar包 03、ads_traffic_stats_by_source.json文件 P113 P114 P115 P116 P117 P118 P119 P120 P121 P122【122_在…...

python考研志愿填报模拟系统vue

本系统提供给管理员对学生、院校、研究生信息、专业信息、学院信息等诸多功能进行管理。本系统对于学生输入的任何信息都进行了一定的验证&#xff0c;为管理员操作提高了效率&#xff0c;也使其数据安全性得到了保障。本考研志愿填报模拟系统以Django作为框架&#xff0c;B/S模…...

【LeetCode-面试经典150题-day20】

目录 70.爬楼梯 198.打家劫舍 139.单词拆分 322.零钱兑换 300.最长递增子序列 70.爬楼梯 题意&#xff1a; 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢&#xff1f; 提示&#xff1a; 1 < n < …...

回归与聚类算法系列②:线性回归

目录 1、定义与公式 2、应用场景 3、特征与目标的关系分析 线性回归的损失函数 为什么需要损失函数 损失函数 ⭐如何减少损失 4、优化算法 正规方程 梯度下降 优化动态图 偏导 正规方程和梯度下降比较 5、优化方法GD、SGD、SAG 6、⭐线性回归API 7、实例&#…...

springBoot:redis使用

需求&#xff1a;查询酒店房间列表 1、引入依赖 <!--redis--><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId></dependency> 2、配置yml文件 server:port: 80…...

cmake 选择 vs编译器

QQ:2967732156 QQ交流群&#xff1a;622684416 // 编译VS2017版本的Tars&#xff0c; Release版本 // win32 cmake .. -G "Visual Studio 15 2017" -D CMAKE_BUILD_TYPERelease // x64 cmake .. -G "Visual Studio 15 2017 Win64" -D CMAKE_BUILD_…...

项目(智慧教室)第一部分:cubemx配置,工程文件的移植,触摸屏的检测,项目bug说明

第一章&#xff1a;需求与配置 一。项目需求 二。实现外设控制 注意&#xff1a; 先配置引脚&#xff0c;再配置外设。否则会出现一些不可预料的问题 1.时钟&#xff0c;串口&#xff0c;灯&#xff0c;蜂鸣器配置 &#xff08;1&#xff09;RCC配置为外部时钟&#xff0c;修…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

无法与IP建立连接,未能下载VSCode服务器

如题&#xff0c;在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈&#xff0c;发现是VSCode版本自动更新惹的祸&#xff01;&#xff01;&#xff01; 在VSCode的帮助->关于这里发现前几天VSCode自动更新了&#xff0c;我的版本号变成了1.100.3 才导致了远程连接出…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

2025季度云服务器排行榜

在全球云服务器市场&#xff0c;各厂商的排名和地位并非一成不变&#xff0c;而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势&#xff0c;对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析&#xff1a; 一、全球“三巨头”…...