联合熵和条件熵
本专栏包含信息论与编码的核心知识,按知识点组织,可作为教学或学习的参考。markdown版本已归档至【Github仓库:information-theory】,需要的朋友们自取。或者公众号【AIShareLab】回复 信息论 也可获取。
文章目录
- 联合熵
- 条件熵
联合熵
联合集 XY 上, 对联合自信息 I(xy)I(x y)I(xy) 的平均值称为联合熵:
H(XY)=Ep(xy)[I(x⇌y)]=−∑x∑yp(xy)logp(xy)\begin{array}{l} H(X Y)=\underset{p(x y)}{E}[I(x \rightleftharpoons y)] \\ =-\sum_{x} \sum_{y} p(x y) \log p(x y) \end{array} H(XY)=p(xy)E[I(x⇌y)]=−∑x∑yp(xy)logp(xy)
当有n个随机变量 X=(X1,X2,…,Xn)X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)X=(X1,X2,…,Xn) , 有
H(X)=−∑X1,X2,…,Xnp(x1,x2,…,xn)logp(x1,x2,…,xn)H(\mathbf{X})=-\sum_{X_{1}, X_{2}, \ldots, X_{n}} p\left(x_{1}, x_{2}, \ldots, x_{n}\right) \log p\left(x_{1}, x_{2}, \ldots, x_{n}\right) H(X)=−X1,X2,…,Xn∑p(x1,x2,…,xn)logp(x1,x2,…,xn)
信息熵与热熵的关系
信息熵的概念是借助于热熵的概念而产生的。
-
信息熵与热熵含义相似
-
信息熵与热熵的区别:
- 信息熵的不增原理
- 热熵不减原理
-
热熵的减少等于信息熵的增加。
条件熵
联合集 XY\mathbf{X Y}XY 上, 条件自信息I(y/x)I(y / x)I(y/x)的平均值定义为条件熵:
H(Y/X)=Ep(xy)[I(y/x)]=−∑x∑yp(xy)logp(y/x)=∑xp(x)[−∑yp(y/x)logp(y/x)]=∑xp(x)H(Y/x)\begin{array}{l} H(Y / X)=\underset{p(x y)}{E}[I(y / x)]=-\sum_{x} \sum_{y} p(x y) \log p(y / x) \\ =\sum_{x} p(x)\left[-\sum_{y} p(y / x) \log p(y / x)\right]=\sum_{x} p(x) H(Y / x) \end{array} H(Y/X)=p(xy)E[I(y/x)]=−∑x∑yp(xy)logp(y/x)=∑xp(x)[−∑yp(y/x)logp(y/x)]=∑xp(x)H(Y/x)
推广:
H(Xn∣X1,…,Xn−1)=−∑X1,X2,…,Xnp(x1,x2,…,xn)logp(xn∣x1,…,xn−1)\begin{array}{l} H\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) =-\sum_{X_{1}, X_{2}, \ldots, X_{n}} p\left(x_{1}, x_{2}, \ldots, x_{n}\right) \log p\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right) \end{array} H(Xn∣X1,…,Xn−1)=−∑X1,X2,…,Xnp(x1,x2,…,xn)logp(xn∣x1,…,xn−1)
注意:当有n个随机变量 X=(X1,X2,…,Xn)X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)X=(X1,X2,…,Xn) 。
H(X,Y)=H(Y)+H(X∣Y)=H(X)+H(Y∣X)H(X)=H(X1)+H(X2∣X1)+…+H(Xn∣X1,X2,…,Xn−1)\begin{array}{l} H(X, Y)=H(Y)+H(X \mid Y)=H(X)+H(Y \mid X) \\ H(\mathbf{X}) =H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+\ldots+H\left(X_{n} \mid X_{1}, X_{2}, \ldots, X_{n-1}\right) \end{array} H(X,Y)=H(Y)+H(X∣Y)=H(X)+H(Y∣X)H(X)=H(X1)+H(X2∣X1)+…+H(Xn∣X1,X2,…,Xn−1)
注意: H(X∣Y)\mathbf{H}(\mathbf{X} \mid \mathbf{Y})H(X∣Y) 表示已知变量 Y\mathbf{Y}Y 后, 对变量 X\mathbf{X}X 尚存在的平均不确定性(存在疑义)。
已知信源 X=[ABC1/31/31/3]X=\left[\begin{array}{ccc}A & B & C \\ 1 / 3 & 1 / 3 & 1 / 3\end{array}\right]X=[A1/3B1/3C1/3] 和 Y=[DEF1/103/53/10]Y=\left[\begin{array}{ccc}D & E & F \\ 1 / 10 & 3 / 5 & 3 / 10\end{array}\right]Y=[D1/10E3/5F3/10] ,请快速两个信源的信息熵的关系。
答:H(X) > H(Y)。其实不用计算,由上面可知一个简单的结论,等概率时信息熵最大。
参考文献:
- Proakis, John G., et al. Communication systems engineering. Vol. 2. New Jersey: Prentice Hall, 1994.
- Proakis, John G., et al. SOLUTIONS MANUAL Communication Systems Engineering. Vol. 2. New Jersey: Prentice Hall, 1994.
- 周炯槃. 通信原理(第3版)[M]. 北京:北京邮电大学出版社, 2008.
- 樊昌信, 曹丽娜. 通信原理(第7版) [M]. 北京:国防工业出版社, 2012.
相关文章:
联合熵和条件熵
本专栏包含信息论与编码的核心知识,按知识点组织,可作为教学或学习的参考。markdown版本已归档至【Github仓库:information-theory】,需要的朋友们自取。或者公众号【AIShareLab】回复 信息论 也可获取。 文章目录联合熵条件熵联合…...
华为OD机试真题Python实现【求最大数字】真题+解题思路+代码(20222023)
求最大数字 题目 给定一个由纯数字组成以字符串表示的数值,现要求字符串中的每个数字最多只能出现2次,超过的需要进行删除;删除某个重复的数字后,其它数字相对位置保持不变。 如34533,数字3重复超过2次,需要删除其中一个3,删除第一个3后获得最大数值4533 请返回经过删…...

Python爬虫(10)selenium爬虫后数据,存入csv、txt并将存入数据并对数据进行查询
之前的文章有关于更多操作方式详细解答,本篇基于前面的知识点进行操作,如果不了解可以先看之前的文章 Python爬虫(1)一次性搞定Selenium(新版)8种find_element元素定位方式 Python爬虫(2)-Selenium控制浏览…...

Python 之 Pandas 时间函数 time 、datetime 模块和时间处理基础
文章目录一、time 模块1、时间格式转换图2. struct_time 元组元素结构3. format time 结构化表示二、datetime 模块1. date类2. 方法和属性3. datetime 类三、timedelta 类的时间加减四、时间处理基础Python 中提供了对时间日期的多种多样的处理方式,主要是在 time …...
C语言学习及复习笔记-【5】C 运算符
文章目录5. C 运算符5.1 关系运算符5.2 逻辑运算符5.3 位运算符5.4 杂项运算符 ↦ sizeof & 三元5.5 例子1). 利用异或 ^ 来交换两个数的值,而且不引入其他变量。2). 利用位与 & 运算,判断一个整数是否是2的整数次幂。3). 不同长度的数据进行位运…...

数仓、数据湖、湖仓一体、数据网格
第一代:数据仓库 定义 为解决数据库面对数据分析的不足,孕育出新一类产品数据仓库。数据仓库(Data Warehouse)是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管理决策和信息的全局共享。 数…...

C语言【atoi函数】
C语言【atoi函数】🫅系统atoi函数🫅 模拟实现atoi函数看到atoi函数,有人又会问有这个函数,我怎么没用过。那就说明:不是你刷题太少,就是atoi函数存在感太低。 这篇函数就带你领略atoi函数的魅力 Ǻ…...

一起学习用Verilog在FPGA上实现CNN----(八)integrationFC设计
1 integrationFC设计 LeNet-5网络结构全连接部分如图所示,该部分有2个全连接层,1个TanH激活层,1个SoftMax激活层: 图片来自附带的技术文档《Hardware Documentation》 integrationFC部分原理图,如图所示,…...

面试题总结
1.js的数据类型 分为基本数据类型和引用数据类型。 基本数据类型 ES5的5种:Null,undefined,Boolean,Number,String, ES6新增:Symbol表示独一无二的值 ES10新增:BigInt 表示任意大的…...

go进阶(1) -深入理解goroutine并发运行机制
并发指的是同时进行多个任务的程序,Web处理请求,读写处理操作,I/O操作都可以充分利用并发增长处理速度,随着网络的普及,并发操作逐渐不可或缺 一、goroutine简述 在Golang中一个goroutines就是一个执行单元ÿ…...
mongodb 操作记录
#启动服务 net start MongoDB #停止服务 net stop MongoDB #进入mongo shell 方式 mongo db #查看当前数据库是那个 #插入一条数据 db.runoob.insert({x:10}) #查找数据 db.runoob.find() 查询所有的数据库 show dbs #连接mongodb mongodb://[username:password]host1[:po…...
JDBC简单的示例
JDBC 编程步骤 加载驱动程序: Class.forName(driverClass) //加载MySql驱动 Class.forName("com.mysql.jdbc.Driver") //加载Oracle驱动 Class.forName("oracle.jdbc.driver.OracleDriver")获得数据库连接: DriverManager.getCon…...

Spring架构篇--2.3 远程通信基础--IO多路复用select,poll,epoll模型
前言:对于传统的BIO(同步阻塞)模型,当有客户端连接达到服务端,服务端在对改连接进行连接建立,和数据传输过程中,是无法响应其他客户端的,只有当服务端完成对一个客户端处理后&#x…...

python--matplotlib(4)
前言 Matplotlib画图工具的官网地址是 http://matplotlib.org/ Python环境下实现Matlab制图功能的第三方库,需要numpy库的支持,支持用户方便设计出二维、三维数据的图形显示,制作的图形达到出版级的标准。 其他matplotlib文章 python--matpl…...
【项目精选】城市公交查询系统(论文+视频+源码)
点击下载源码 1.1 选题背景 随着低碳生活的普及,人们更倾向于低碳环保的出行方式,完善公交系统无疑具有重要意义。公交是居民日常生活中最常使用的交通工具之一,伴随着我国经济繁荣和城市人口增长,出行工具的选择也变得越来越重要…...
less、sass、webpack(前端工程化)
目录 一、Less 1.配置less环境 1.先要安装node:在cmd中:node -v检查是否安装node 2.安装less :cnpm install -g less 3.检查less是否安装成功:lessc -v 4.安装成功后,在工作区创建xx.less文件 5.在控制台编译less,命令&…...

解析Java中的class文件
解析class文件需要把class文件当成文件流来处理,定义ClassReader结构体 type ClassReader struct {data []byte }go语言中的reslice语法可以跳过已经读过的数据。 同时定义了ClassFile数据结构来描述class文件的各个部分,该数据结构如下所示࿱…...

直播预告 | 企业如何轻松完成数据治理?火山引擎 DataLeap 给你一份实战攻略!
更多技术交流、求职机会,欢迎关注字节跳动数据平台微信公众号,回复【1】进入官方交流群 企业数字化转型正席卷全球,这不仅是趋势所在,也是企业发展必然面对的考题,也是企业最关心、最难决策的难题,数字化不…...
华为OD机试真题Python实现【 磁盘容量】真题+解题思路+代码(20222023)
磁盘容量 题目 磁盘的容量单位常用的有M、G、T 他们之间的换算关系为1T =1024G,1G=1024M 现在给定n块磁盘的容量,请对他们按从小到大的顺序进行稳定排序 例如给定5块盘的容量 5 1T 20M 3G 10G6T 3M12G9M 排序后的结果为 20M 3G 3M12G9M 1T 10G6T 注意单位可以重复出现 上述…...

php调试配置
错误信息输出 错误日志 nginx把对php的请求发给php-fpm fastcgi进程来处理,默认的php-fpm只会输出php-fpm的错误信息,在php-fpm的errors log里也看不到php的errorlog。原因是php-fpm的配置文件php-fpm.conf中默认是关闭worker进程的错误输出࿰…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...

【入坑系列】TiDB 强制索引在不同库下不生效问题
文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...

如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
oracle与MySQL数据库之间数据同步的技术要点
Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异,它们的数据同步要求既要保持数据的准确性和一致性,又要处理好性能问题。以下是一些主要的技术要点: 数据结构差异 数据类型差异ÿ…...

云原生玩法三问:构建自定义开发环境
云原生玩法三问:构建自定义开发环境 引言 临时运维一个古董项目,无文档,无环境,无交接人,俗称三无。 运行设备的环境老,本地环境版本高,ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...
【Go语言基础【13】】函数、闭包、方法
文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数(函数作为参数、返回值) 三、匿名函数与闭包1. 匿名函数(Lambda函…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...

Linux 中如何提取压缩文件 ?
Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...