联合熵和条件熵
本专栏包含信息论与编码的核心知识,按知识点组织,可作为教学或学习的参考。markdown版本已归档至【Github仓库:information-theory】,需要的朋友们自取。或者公众号【AIShareLab】回复 信息论 也可获取。
文章目录
- 联合熵
- 条件熵
联合熵
联合集 XY 上, 对联合自信息 I(xy)I(x y)I(xy) 的平均值称为联合熵:
H(XY)=Ep(xy)[I(x⇌y)]=−∑x∑yp(xy)logp(xy)\begin{array}{l} H(X Y)=\underset{p(x y)}{E}[I(x \rightleftharpoons y)] \\ =-\sum_{x} \sum_{y} p(x y) \log p(x y) \end{array} H(XY)=p(xy)E[I(x⇌y)]=−∑x∑yp(xy)logp(xy)
当有n个随机变量 X=(X1,X2,…,Xn)X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)X=(X1,X2,…,Xn) , 有
H(X)=−∑X1,X2,…,Xnp(x1,x2,…,xn)logp(x1,x2,…,xn)H(\mathbf{X})=-\sum_{X_{1}, X_{2}, \ldots, X_{n}} p\left(x_{1}, x_{2}, \ldots, x_{n}\right) \log p\left(x_{1}, x_{2}, \ldots, x_{n}\right) H(X)=−X1,X2,…,Xn∑p(x1,x2,…,xn)logp(x1,x2,…,xn)
信息熵与热熵的关系
信息熵的概念是借助于热熵的概念而产生的。
-
信息熵与热熵含义相似
-
信息熵与热熵的区别:
- 信息熵的不增原理
- 热熵不减原理
-
热熵的减少等于信息熵的增加。
条件熵
联合集 XY\mathbf{X Y}XY 上, 条件自信息I(y/x)I(y / x)I(y/x)的平均值定义为条件熵:
H(Y/X)=Ep(xy)[I(y/x)]=−∑x∑yp(xy)logp(y/x)=∑xp(x)[−∑yp(y/x)logp(y/x)]=∑xp(x)H(Y/x)\begin{array}{l} H(Y / X)=\underset{p(x y)}{E}[I(y / x)]=-\sum_{x} \sum_{y} p(x y) \log p(y / x) \\ =\sum_{x} p(x)\left[-\sum_{y} p(y / x) \log p(y / x)\right]=\sum_{x} p(x) H(Y / x) \end{array} H(Y/X)=p(xy)E[I(y/x)]=−∑x∑yp(xy)logp(y/x)=∑xp(x)[−∑yp(y/x)logp(y/x)]=∑xp(x)H(Y/x)
推广:
H(Xn∣X1,…,Xn−1)=−∑X1,X2,…,Xnp(x1,x2,…,xn)logp(xn∣x1,…,xn−1)\begin{array}{l} H\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) =-\sum_{X_{1}, X_{2}, \ldots, X_{n}} p\left(x_{1}, x_{2}, \ldots, x_{n}\right) \log p\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right) \end{array} H(Xn∣X1,…,Xn−1)=−∑X1,X2,…,Xnp(x1,x2,…,xn)logp(xn∣x1,…,xn−1)
注意:当有n个随机变量 X=(X1,X2,…,Xn)X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)X=(X1,X2,…,Xn) 。
H(X,Y)=H(Y)+H(X∣Y)=H(X)+H(Y∣X)H(X)=H(X1)+H(X2∣X1)+…+H(Xn∣X1,X2,…,Xn−1)\begin{array}{l} H(X, Y)=H(Y)+H(X \mid Y)=H(X)+H(Y \mid X) \\ H(\mathbf{X}) =H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+\ldots+H\left(X_{n} \mid X_{1}, X_{2}, \ldots, X_{n-1}\right) \end{array} H(X,Y)=H(Y)+H(X∣Y)=H(X)+H(Y∣X)H(X)=H(X1)+H(X2∣X1)+…+H(Xn∣X1,X2,…,Xn−1)
注意: H(X∣Y)\mathbf{H}(\mathbf{X} \mid \mathbf{Y})H(X∣Y) 表示已知变量 Y\mathbf{Y}Y 后, 对变量 X\mathbf{X}X 尚存在的平均不确定性(存在疑义)。
已知信源 X=[ABC1/31/31/3]X=\left[\begin{array}{ccc}A & B & C \\ 1 / 3 & 1 / 3 & 1 / 3\end{array}\right]X=[A1/3B1/3C1/3] 和 Y=[DEF1/103/53/10]Y=\left[\begin{array}{ccc}D & E & F \\ 1 / 10 & 3 / 5 & 3 / 10\end{array}\right]Y=[D1/10E3/5F3/10] ,请快速两个信源的信息熵的关系。
答:H(X) > H(Y)。其实不用计算,由上面可知一个简单的结论,等概率时信息熵最大。
参考文献:
- Proakis, John G., et al. Communication systems engineering. Vol. 2. New Jersey: Prentice Hall, 1994.
- Proakis, John G., et al. SOLUTIONS MANUAL Communication Systems Engineering. Vol. 2. New Jersey: Prentice Hall, 1994.
- 周炯槃. 通信原理(第3版)[M]. 北京:北京邮电大学出版社, 2008.
- 樊昌信, 曹丽娜. 通信原理(第7版) [M]. 北京:国防工业出版社, 2012.
相关文章:
联合熵和条件熵
本专栏包含信息论与编码的核心知识,按知识点组织,可作为教学或学习的参考。markdown版本已归档至【Github仓库:information-theory】,需要的朋友们自取。或者公众号【AIShareLab】回复 信息论 也可获取。 文章目录联合熵条件熵联合…...
华为OD机试真题Python实现【求最大数字】真题+解题思路+代码(20222023)
求最大数字 题目 给定一个由纯数字组成以字符串表示的数值,现要求字符串中的每个数字最多只能出现2次,超过的需要进行删除;删除某个重复的数字后,其它数字相对位置保持不变。 如34533,数字3重复超过2次,需要删除其中一个3,删除第一个3后获得最大数值4533 请返回经过删…...
Python爬虫(10)selenium爬虫后数据,存入csv、txt并将存入数据并对数据进行查询
之前的文章有关于更多操作方式详细解答,本篇基于前面的知识点进行操作,如果不了解可以先看之前的文章 Python爬虫(1)一次性搞定Selenium(新版)8种find_element元素定位方式 Python爬虫(2)-Selenium控制浏览…...
Python 之 Pandas 时间函数 time 、datetime 模块和时间处理基础
文章目录一、time 模块1、时间格式转换图2. struct_time 元组元素结构3. format time 结构化表示二、datetime 模块1. date类2. 方法和属性3. datetime 类三、timedelta 类的时间加减四、时间处理基础Python 中提供了对时间日期的多种多样的处理方式,主要是在 time …...
C语言学习及复习笔记-【5】C 运算符
文章目录5. C 运算符5.1 关系运算符5.2 逻辑运算符5.3 位运算符5.4 杂项运算符 ↦ sizeof & 三元5.5 例子1). 利用异或 ^ 来交换两个数的值,而且不引入其他变量。2). 利用位与 & 运算,判断一个整数是否是2的整数次幂。3). 不同长度的数据进行位运…...
数仓、数据湖、湖仓一体、数据网格
第一代:数据仓库 定义 为解决数据库面对数据分析的不足,孕育出新一类产品数据仓库。数据仓库(Data Warehouse)是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管理决策和信息的全局共享。 数…...
C语言【atoi函数】
C语言【atoi函数】🫅系统atoi函数🫅 模拟实现atoi函数看到atoi函数,有人又会问有这个函数,我怎么没用过。那就说明:不是你刷题太少,就是atoi函数存在感太低。 这篇函数就带你领略atoi函数的魅力 Ǻ…...
一起学习用Verilog在FPGA上实现CNN----(八)integrationFC设计
1 integrationFC设计 LeNet-5网络结构全连接部分如图所示,该部分有2个全连接层,1个TanH激活层,1个SoftMax激活层: 图片来自附带的技术文档《Hardware Documentation》 integrationFC部分原理图,如图所示,…...
面试题总结
1.js的数据类型 分为基本数据类型和引用数据类型。 基本数据类型 ES5的5种:Null,undefined,Boolean,Number,String, ES6新增:Symbol表示独一无二的值 ES10新增:BigInt 表示任意大的…...
go进阶(1) -深入理解goroutine并发运行机制
并发指的是同时进行多个任务的程序,Web处理请求,读写处理操作,I/O操作都可以充分利用并发增长处理速度,随着网络的普及,并发操作逐渐不可或缺 一、goroutine简述 在Golang中一个goroutines就是一个执行单元ÿ…...
mongodb 操作记录
#启动服务 net start MongoDB #停止服务 net stop MongoDB #进入mongo shell 方式 mongo db #查看当前数据库是那个 #插入一条数据 db.runoob.insert({x:10}) #查找数据 db.runoob.find() 查询所有的数据库 show dbs #连接mongodb mongodb://[username:password]host1[:po…...
JDBC简单的示例
JDBC 编程步骤 加载驱动程序: Class.forName(driverClass) //加载MySql驱动 Class.forName("com.mysql.jdbc.Driver") //加载Oracle驱动 Class.forName("oracle.jdbc.driver.OracleDriver")获得数据库连接: DriverManager.getCon…...
Spring架构篇--2.3 远程通信基础--IO多路复用select,poll,epoll模型
前言:对于传统的BIO(同步阻塞)模型,当有客户端连接达到服务端,服务端在对改连接进行连接建立,和数据传输过程中,是无法响应其他客户端的,只有当服务端完成对一个客户端处理后&#x…...
python--matplotlib(4)
前言 Matplotlib画图工具的官网地址是 http://matplotlib.org/ Python环境下实现Matlab制图功能的第三方库,需要numpy库的支持,支持用户方便设计出二维、三维数据的图形显示,制作的图形达到出版级的标准。 其他matplotlib文章 python--matpl…...
【项目精选】城市公交查询系统(论文+视频+源码)
点击下载源码 1.1 选题背景 随着低碳生活的普及,人们更倾向于低碳环保的出行方式,完善公交系统无疑具有重要意义。公交是居民日常生活中最常使用的交通工具之一,伴随着我国经济繁荣和城市人口增长,出行工具的选择也变得越来越重要…...
less、sass、webpack(前端工程化)
目录 一、Less 1.配置less环境 1.先要安装node:在cmd中:node -v检查是否安装node 2.安装less :cnpm install -g less 3.检查less是否安装成功:lessc -v 4.安装成功后,在工作区创建xx.less文件 5.在控制台编译less,命令&…...
解析Java中的class文件
解析class文件需要把class文件当成文件流来处理,定义ClassReader结构体 type ClassReader struct {data []byte }go语言中的reslice语法可以跳过已经读过的数据。 同时定义了ClassFile数据结构来描述class文件的各个部分,该数据结构如下所示࿱…...
直播预告 | 企业如何轻松完成数据治理?火山引擎 DataLeap 给你一份实战攻略!
更多技术交流、求职机会,欢迎关注字节跳动数据平台微信公众号,回复【1】进入官方交流群 企业数字化转型正席卷全球,这不仅是趋势所在,也是企业发展必然面对的考题,也是企业最关心、最难决策的难题,数字化不…...
华为OD机试真题Python实现【 磁盘容量】真题+解题思路+代码(20222023)
磁盘容量 题目 磁盘的容量单位常用的有M、G、T 他们之间的换算关系为1T =1024G,1G=1024M 现在给定n块磁盘的容量,请对他们按从小到大的顺序进行稳定排序 例如给定5块盘的容量 5 1T 20M 3G 10G6T 3M12G9M 排序后的结果为 20M 3G 3M12G9M 1T 10G6T 注意单位可以重复出现 上述…...
php调试配置
错误信息输出 错误日志 nginx把对php的请求发给php-fpm fastcgi进程来处理,默认的php-fpm只会输出php-fpm的错误信息,在php-fpm的errors log里也看不到php的errorlog。原因是php-fpm的配置文件php-fpm.conf中默认是关闭worker进程的错误输出࿰…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
【Linux】C语言执行shell指令
在C语言中执行Shell指令 在C语言中,有几种方法可以执行Shell指令: 1. 使用system()函数 这是最简单的方法,包含在stdlib.h头文件中: #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
转转集团旗下首家二手多品类循环仓店“超级转转”开业
6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...
江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...
高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
前端开发面试题总结-JavaScript篇(一)
文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包(Closure)?闭包有什么应用场景和潜在问题?2.解释 JavaScript 的作用域链(Scope Chain) 二、原型与继承3.原型链是什么?如何实现继承&a…...
