算法比赛——必备的数论知识
秋名山码民的主页
🎉欢迎关注🔎点赞👍收藏⭐️留言📝
🙏作者水平有限,如发现错误,还请私信或者评论区留言!
目录
- 一、欧几里得
- 二、扩展欧几里得
- 三、算术基本定理
- 四、线性筛选求质数
- 五、等差数列
- 六、等比数列
- 七、组合计数
- 最后
一、欧几里得
求最大公约数的一种常用方法
public static int gcd(int a, int b) {return b != 0 ? gcd(b, a % b) : a;
}
二、扩展欧几里得
求x,y使得ax+by = gcd(a,b)
public static int exGcd(int a,int b,int x,int y){if(b == 0){x = 1;y = 0;return a;}int d = exGcd(b,a%b,y,x);y -= (a/b)*x;return d;}
三、算术基本定理
算术基本定理,又称为正整数的唯一分解定理,即:每个大于1的自然数,要么本身就是质数,要么可以写为2个或以上的质数的积,而且这些质因子按大小排列之后,写法仅有一种方式。

证明参考:维基百科
四、线性筛选求质数
在O(N)的时间复杂度内,求出来1 ~ n中所有的质数,以及每一个数的最小质因子。
private static void get_primes(int n) {for (int i = 2; i <= n; i++) {if (!st[i]) primes[cnt++] = i;for (int j = 0; primes[j] * i <= n; j++) {/*因为prime中素数是递增的,所以如果i%prime[j]!=0代表i的最小质因数还没有找到,即i的最小质因数大于prime[j]也就是说prime[j]就是i*prime[j]的最小质因数,于是i*prime[j]被它的最小质因数筛掉了*/st[primes[j] * i] = true; // 把质数的i倍筛掉/*如果当i%prime[j]==0时,代表i的最小质因数是prime[j],那么i*prime[j+k](k>0)这个合数的最小质因数就不是prime[j+k]而是prime[j]了所以i*prime[j+k]应该被prime[j]筛掉,而不是后续的prime[j+k],于是在此时break*/if (i % primes[j] == 0) break; // 通过最小质因子来筛}}}
五、等差数列
这俩个数列,学过高中数学的应该都清楚,我就不加以证明了。
1246. 等差数列
import java.util.Arrays;
import java.util.Scanner;/*** @Author 秋名山码神* @Date 2023/2/17* @Description*/
public class Main {static int N = 100010;static int[] a = new int[N];public static int gcd(int a,int b){return b != 0 ? gcd(b,a%b) : a;//b!=0 , 递归计算gcd(b,a%b)}public static void main(String[] args) {Scanner sc = new Scanner(System.in);int n = sc.nextInt();for(int i = 0; i<n; i++)a[i] = sc.nextInt();Arrays.sort(a,0,n);int d = 0;for(int i = 1; i<n; i++)d = gcd(d,a[i] - a[0]);if(d == 0){System.out.println(n);}else {System.out.println((a[n-1] - a[0]) / d + 1);}}
}
六、等比数列
P8636 蓝桥杯 2016 省 AB 最大比例
#include<iostream>
#include<algorithm>using namespace std;const int N=110;typedef long long LL;LL x[N],a[N],b[N];
int cnt=0;//假设原数列为 a,a*(p/q)^1,a*(p/q)^2,...,a*(p/q)^(n-1)
//假设抽取的数列 b0,b1,...,b(N-1) (从小到大排好序了)
// b1/b0,b2/b0,...,b(N-1)/b0--> (p/q)^x1,(p/q)^x2,...,(p/q)^x(N-1)
// 我们要求的是: (p/q)^k (p/q)>1,所以使k最大,即求 x1~x(N-1)的最大公约数
//这里我们使用更相减损术,因为我们没有得到确切的x1~x(N-1)是多少,我们只有(p/q)^x1,(p/q)^x2,...,(p/q)^x(N-1)这些的值/*更相减损术:第一步:任意给定两个正整数;判断它们是否都是偶数。若是,则用2约简;若不是则执行第二步。
第二步:以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数。继续这个操作,直到所得的减数和差相等为止。
则第一步中约掉的若干个2的积与第二步中等数的乘积就是所求的最大公约数。*///更相减损术总用较大的减去较小的
/*例子:98-63=3563-35=2835-28=728-7=2121-7=1414-7=7
所以,98和63的最大公约数等于7。*///我们这里要用更相减损术的是指数,所以要让(p/q)^x1,(p/q)^x2,...,(p/q)^x(N-1),两两计算,互除,除到结果为1,即x1=x2,此时幂次为0,结果为1,这其实就是y总的思路,再次感叹y总的才华
//把分子分母分别去算,结果是相同的因为,分子分母的幂次是相同的
LL gcd(LL a,LL b)
{return b? gcd(b,a%b):a;
}LL gcd_sub(LL a,LL b)
{if(a<b) swap(a,b); //更相减损术总是大减小(它们的底数是一样的)if(b==1) return a;return gcd_sub(b,a/b);
}int main()
{int n;cin>>n;for(int i=0; i<n; i++) scanf("%lld",&x[i]);sort(x,x+n);for(int i=1; i<n; i++){if(x[i] != x[i-1]){LL d=gcd(x[i],x[0]); a[cnt]=x[i] / d; //得到x[i]/x[0]的分子b[cnt]=x[0] / d; //得到x[i]/x[0]的分母cnt++;}}LL up=a[0],down=b[0];for(int i=1; i<cnt; i++){up=gcd_sub(up,a[i]); //两两求最大公约数down=gcd_sub(down,b[i]);}cout<<up<<"/"<<down<<endl;return 0;
}
七、组合计数
加法原理 : 若完成一件事的方法有n类,其中第i类方法包括ai种不同的方法,且这些方法互不重合,则完成这件事共有a1+a2+…+an种不同的方法。
乘法原理 :若完成一件事,需要n个步骤,其中第i个步骤有ai种不同的完成方法,且这些步骤互不干扰,则完成这件事共有a1a2…*an种不同的方法
排列数 : 从n个不同的元素中依次取出m个元素排成一列,产生的不同排列的数量为:

组合数 : 从n个元素中取出m个元素组成一个集合(不考虑顺序),产生的不同集合的数量为:

计算系数
//杨辉三角做法:
#include<iostream>
using namespace std;
long long x[1010][1010];
int main()
{long long a,b,k,n,m;cin>>a>>b>>k>>n>>m;x[1][1]=1;for(int i=2;i<=k+1;i++) for(int j=1;j<=i;j++)x[i][j]=(x[i-1][j-1]*b+x[i-1][j]*a)%10007;cout<<x[k+1][m+1];return 0;
}
二项式做法
最后
数论的知识太多了,这是我最近三天想到的,后续有时间再补充吧!

相关文章:
算法比赛——必备的数论知识
秋名山码民的主页 🎉欢迎关注🔎点赞👍收藏⭐️留言📝 🙏作者水平有限,如发现错误,还请私信或者评论区留言! 目录一、欧几里得二、扩展欧几里得三、算术基本定理四、线性筛选求质数五…...
Docker概述
什么是Docker我们要学习在Linux(RockyLinux)中安装使用Docker来配置软件的功能Docker是一个用来开发、运输和运行应用程序的开放平台。使用Docker可以将应用程序与基础结构分离,以便快速交付软件。使用Docker,您可以以管理应用程序的方式管理基础架构。通…...
实验室设计建设方案主要内容
实验室设计建设整体解决方案SICOLAB需要综合考虑实验室的功能需求、空间布局、设备选型、安全防护、节能环保等多方面因素。以下是一个基本的实验室设计建设方案的流程:一、需求分析:了解实验室的使用目的、实验内容、使用人数、设备种类、实验标准等&am…...
华为OD机试真题Python实现【日志采集系统】真题+解题思路+代码(20222023)
日志采集系统 题目 日志采集是运维系统的的核心组件。日志是按行生成,每行记做一条,由采集系统分批上报。 如果上报太频繁,会对服务端造成压力; 如果上报太晚,会降低用户的体验; 如果一次上报的条数太多,会导致超时失败。 为此,项目组设计了如下的上报策略: 每成功上…...
Python的模块与工具包
模块 模块是一个Python文件,以 .py结尾。模块能定义函数,类和变量,模块里也能包含可执行的代码。 作用 python 中有很多各种不同的模块,每一个模块都可以帮助我们快速的实现一些功能,比如实现和时间相关的功能就可以…...
联合熵和条件熵
本专栏包含信息论与编码的核心知识,按知识点组织,可作为教学或学习的参考。markdown版本已归档至【Github仓库:information-theory】,需要的朋友们自取。或者公众号【AIShareLab】回复 信息论 也可获取。 文章目录联合熵条件熵联合…...
华为OD机试真题Python实现【求最大数字】真题+解题思路+代码(20222023)
求最大数字 题目 给定一个由纯数字组成以字符串表示的数值,现要求字符串中的每个数字最多只能出现2次,超过的需要进行删除;删除某个重复的数字后,其它数字相对位置保持不变。 如34533,数字3重复超过2次,需要删除其中一个3,删除第一个3后获得最大数值4533 请返回经过删…...
Python爬虫(10)selenium爬虫后数据,存入csv、txt并将存入数据并对数据进行查询
之前的文章有关于更多操作方式详细解答,本篇基于前面的知识点进行操作,如果不了解可以先看之前的文章 Python爬虫(1)一次性搞定Selenium(新版)8种find_element元素定位方式 Python爬虫(2)-Selenium控制浏览…...
Python 之 Pandas 时间函数 time 、datetime 模块和时间处理基础
文章目录一、time 模块1、时间格式转换图2. struct_time 元组元素结构3. format time 结构化表示二、datetime 模块1. date类2. 方法和属性3. datetime 类三、timedelta 类的时间加减四、时间处理基础Python 中提供了对时间日期的多种多样的处理方式,主要是在 time …...
C语言学习及复习笔记-【5】C 运算符
文章目录5. C 运算符5.1 关系运算符5.2 逻辑运算符5.3 位运算符5.4 杂项运算符 ↦ sizeof & 三元5.5 例子1). 利用异或 ^ 来交换两个数的值,而且不引入其他变量。2). 利用位与 & 运算,判断一个整数是否是2的整数次幂。3). 不同长度的数据进行位运…...
数仓、数据湖、湖仓一体、数据网格
第一代:数据仓库 定义 为解决数据库面对数据分析的不足,孕育出新一类产品数据仓库。数据仓库(Data Warehouse)是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管理决策和信息的全局共享。 数…...
C语言【atoi函数】
C语言【atoi函数】🫅系统atoi函数🫅 模拟实现atoi函数看到atoi函数,有人又会问有这个函数,我怎么没用过。那就说明:不是你刷题太少,就是atoi函数存在感太低。 这篇函数就带你领略atoi函数的魅力 Ǻ…...
一起学习用Verilog在FPGA上实现CNN----(八)integrationFC设计
1 integrationFC设计 LeNet-5网络结构全连接部分如图所示,该部分有2个全连接层,1个TanH激活层,1个SoftMax激活层: 图片来自附带的技术文档《Hardware Documentation》 integrationFC部分原理图,如图所示,…...
面试题总结
1.js的数据类型 分为基本数据类型和引用数据类型。 基本数据类型 ES5的5种:Null,undefined,Boolean,Number,String, ES6新增:Symbol表示独一无二的值 ES10新增:BigInt 表示任意大的…...
go进阶(1) -深入理解goroutine并发运行机制
并发指的是同时进行多个任务的程序,Web处理请求,读写处理操作,I/O操作都可以充分利用并发增长处理速度,随着网络的普及,并发操作逐渐不可或缺 一、goroutine简述 在Golang中一个goroutines就是一个执行单元ÿ…...
mongodb 操作记录
#启动服务 net start MongoDB #停止服务 net stop MongoDB #进入mongo shell 方式 mongo db #查看当前数据库是那个 #插入一条数据 db.runoob.insert({x:10}) #查找数据 db.runoob.find() 查询所有的数据库 show dbs #连接mongodb mongodb://[username:password]host1[:po…...
JDBC简单的示例
JDBC 编程步骤 加载驱动程序: Class.forName(driverClass) //加载MySql驱动 Class.forName("com.mysql.jdbc.Driver") //加载Oracle驱动 Class.forName("oracle.jdbc.driver.OracleDriver")获得数据库连接: DriverManager.getCon…...
Spring架构篇--2.3 远程通信基础--IO多路复用select,poll,epoll模型
前言:对于传统的BIO(同步阻塞)模型,当有客户端连接达到服务端,服务端在对改连接进行连接建立,和数据传输过程中,是无法响应其他客户端的,只有当服务端完成对一个客户端处理后&#x…...
python--matplotlib(4)
前言 Matplotlib画图工具的官网地址是 http://matplotlib.org/ Python环境下实现Matlab制图功能的第三方库,需要numpy库的支持,支持用户方便设计出二维、三维数据的图形显示,制作的图形达到出版级的标准。 其他matplotlib文章 python--matpl…...
【项目精选】城市公交查询系统(论文+视频+源码)
点击下载源码 1.1 选题背景 随着低碳生活的普及,人们更倾向于低碳环保的出行方式,完善公交系统无疑具有重要意义。公交是居民日常生活中最常使用的交通工具之一,伴随着我国经济繁荣和城市人口增长,出行工具的选择也变得越来越重要…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...
云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...
江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
