Eviews用向量自回归模型VAR实证分析公路交通通车里程与经济发展GDP协整关系时间序列数据和脉冲响应可视化...
全文下载链接:http://tecdat.cn/?p=27784
河源市是国务院1988年1月7日批准设立的地级市,为了深入研究河源市公路交通与经济发展的关系,本文选取了1988-2014年河源市建市以来24年的地区生产总值(GDP)和公路通车里程(GL)的时间序列数据,其中公路通车里程(GL)用来反映河源市公路交通发展状况,地区生产总值(GDP)反映河源市的经济增长状况(点击文末“阅读原文”获取完整代码数据)。
相关视频
为了消取数据的异方差,将原始数据取对数,分别记做LogGDP和LogGL,数据见表,采用ADF法对LogGDP和LogGL的平稳性进行单位根检验。
首先,对1988-2014年河源市24年的LogGDP和LogGL时间序列进行ADF单位根检验,单位根检验结果如表:
t值和p值是等效的,p值要求小于给定的显著水平,越小越好,小于0.05.等于0是最好的。结果显示,LogGDP和LogGL的ADF值分别为-3.160130和-1.895105,均大于水平值,说明接受原假设,LogGDP和LogGL序列存在单位根,为非平稳序列。因此,需要对LogGDP和LogGL序列继续第二步检验,即对LogGDP和LogGL的一阶差分进行检验,结果如表 :
结果显示,LogGDP和LogGL经过一阶差分检验,得到一阶差分序列D(LogGDP)和D(LogGL)的p值分别为0.0046和 0.0000,均小于0.05的显著值。由于D(LogGDP)和D(LogGL)都是单整序列,且单整阶数相同,均为I(1),所以LogGDP和LogGL两序列之间可能存在协整关系。
点击标题查阅往期内容
向量自回归VAR的迭代多元预测估计 GDP 增长率时间序列|数据分享
左右滑动查看更多
01
02
03
04
GDP与公路交通里程GL协整性检验
由序列的平稳性检验结果可知,河源市地区生产总值GDP和公里通车里程GL在1988-2014年这个时间序列中可能存在协整关系,协整检验的方法有Engle Granger两步法和Johansen极大似然法前者适合对两变量的模型进行协整检验后者适合在多变量的VAR模型中进行检验。
利用engle和granger提出的两步检验法:
首先建立OLS回归模型,结果为
首先建立模型:y=ax+c+e,结果为loggdp= 2.332247*loggl + -7.210750
由ADF单位根检验结果可以看出上述变量是一阶平稳的符合granger因果关系检验的条件.现对各变量之间进行granger因果关系检验以确定它们之间的相互影响关系.取滞后阶数为2阶。
granger因果检验:
从结果可知拒绝loggl不能granger loggdp的假设,即loggl granger引起loggdp;但是不能拒绝loggdp不能granger引起loggl,即接受loggdp不能granger引起loggl。
同时,对方程的残差进行ADF检验结果可以看出残差序列不是平稳的,因此loggdp和loggl之间不存在协整关系。
建立VAR模型
利用Eviews计量经济分析软件,本文对logGDP、loggl变量建立VAR(1)模型,对于VAR模型滞后阶数的选择,得到如表所列的5个评价指标,且5个指标均认为1阶合理即建立VAR(1)模型。
同时,有两类回归统计量出现在VAR对象估计输出的底部:
输出的第一部分的标准OLS回归统计量。根据各自的残差分别计算每个方程的结果,并显示在对应的列中。
输出的第二部分是VAR模型的回归统计量。
即协整方程式是:
LOGGDP=1.36534925116*LOGGDP(-1)-0.326349983643*LOGGDP(-2)+0.139864325278*LOGGL(-1)-0.239810823184*LOGGL(-2)+0.44758535991
可以看到VAR模型的所有根模的倒数都小于1,即都在单位圆内,则该模型是稳定的。可以对VAR模型进行一个标准差的脉冲响应函数分析。
脉冲响应函数是用来衡量随机扰动项的一个标准差冲击对其他变量当前与未来取值的影响轨迹它能够比较直观地刻画变量之间的动态交互作用。
本文继续利用方差分解技术分析经济增长速度、交通量增长之间的相互贡献率。进行方差分解示意图。
各变量对经济增长速度的贡献率。
实证检验
为了检验所建立交通量VAR预测模型的效果,用EVIEWS软件对loggdp历史数据仿真,得到如下预测模型。
loggdp = @coef(1) loggdp(-1) + @coef(2) loggdp(-2) + @coef(3) loggl(-1) + @coef(4) loggl(-2) + @coef(5)
@coef(1) = 1.3653493
@coef(2) = -0.3263500
@coef(3) = 0.1398643
@coef(4) = -0.2398108
@coef(5) = 0.4475854
用VAR方法建立的GDP预测模型预测精度较高,效果较好。此外,可以得到如下的比较图:
同时,对loggl历史数据仿真,得到如下预测模型。
loggl = @coef(1) loggdp(-1) + @coef(2) loggdp(-2) + @coef(3) loggl(-1) + @coef(4) loggl(-2) + @coef(5)
@coef(1) = 0.9502916
@coef(2) = -0.8089714
@coef(3) = 0.5952874
@coef(4) = -0.0153147
@coef(5) = 1.7812591
以及历年loggl预测值、loggl实际值。
采用VAR方法建立的GDP预测模型有一个显著优点,即它不用对当期的GDP或其他变量作出预测,只用历史的GDP和交通量数据,就可以对GDP做出比较准确的预测,由于减少中间变量预测的传递,相应提高了模型预测精度。
点击文末“阅读原文”
获取全文完整资料。
本文选自《Eviews用向量自回归模型VAR实证分析公路交通通车里程与经济发展GDP协整关系时间序列数据和脉冲响应可视化》。
点击标题查阅往期内容
R语言实现向量自回归VAR模型
R语言随机搜索变量选择SSVS估计贝叶斯向量自回归(BVAR)模型
向量自回归(VAR)模型分析消费者价格指数 (CPI) 和失业率时间序列
Matlab创建向量自回归(VAR)模型分析消费者价格指数 (CPI) 和失业率时间序列
Stata广义矩量法GMM面板向量自回归 VAR模型选择、估计、Granger因果检验分析投资、收入和消费数据
R语言时变向量自回归(TV-VAR)模型分析时间序列和可视化
R语言用向量自回归(VAR)进行经济数据脉冲响应研究分析
R语言arima,向量自回归(VAR),周期自回归(PAR)模型分析温度时间序列
R语言VAR模型的不同类型的脉冲响应分析
R语言随机搜索变量选择SSVS估计贝叶斯向量自回归(BVAR)模型
R语言时变参数VAR随机模型
R语言估计时变VAR模型时间序列的实证研究分析案例
R语言向量自回归模型(VAR)及其实现
R语言实现向量自回归VAR模型
R语言估计时变VAR模型时间序列的实证研究分析案例
Python和R用EWMA,ARIMA模型预测时间序列
R语言用LASSO,adaptive LASSO预测通货膨胀时间序列
Python中的ARIMA模型、SARIMA模型和SARIMAX模型对时间序列预测
R语言arima,向量自回归(VAR),周期自回归(PAR)模型分析温度时间序列
【视频】Python和R语言使用指数加权平均(EWMA),ARIMA自回归移动平均模型预测时间序列
相关文章:

Eviews用向量自回归模型VAR实证分析公路交通通车里程与经济发展GDP协整关系时间序列数据和脉冲响应可视化...
全文下载链接:http://tecdat.cn/?p27784 河源市是国务院1988年1月7日批准设立的地级市,为了深入研究河源市公路交通与经济发展的关系,本文选取了1988-2014年河源市建市以来24年的地区生产总值(GDP)和公路通…...

群晖NAS:通过Docker 部署宝塔面板【注册表:cyberbolt/baota】
群晖NAS:通过 Docker 部署宝塔面板【注册表:pch18/baota】 由于 docker 源地址被墙,在面板里面查询不到注册表,使用 ssh 命令行拉取 1、打开 SSH,链接后打开命令行 这里不赘述,具体自行百度 2、下载 镜像…...

pdfjs在线预览组件的使用
前言 pdfjs在线预览组件。 原生浏览器预览pdf文件,存在pdf xss跨站攻击风险。推荐使用pdfjs第三方组件在线预览pdf文件。 如何使用 下载 官方插件下载地址:https://mozilla.github.io/pdf.js/getting_started/ 安装 把下载的文件复制到项目中 使用pd…...
python线程、协程
线程 创建线程对象 from threading import Threadt Thread() # 功能:创建线程对象 # 参数:target 绑定线程函数 # args 元组 给线程函数位置传参 # kwargs 字典 给线程函数键值传参启动线程 t.start() # 启动线程回收线程 t.join([timeout]) # …...
AttributeError: module ‘OpenSSL.SSL’ has no attribute ‘SSLv3_METHOD
这个错误是由于在OpenSSL.SSL模块中找不到SSLv3_METHOD属性导致的。解决这个问题的方法如下: 首先,确保你已经安装了最新版本的cryptography和pyOpenSSL。你可以使用以下命令卸载并重新安装它们: 卸载cryptography:pip uninstall …...

DTCC 2023丨云原生环境下,需要什么样的 ETL 方案?
2023年8月16日~18日,第14届中国数据库技术大会(DTCC 2023)于北京隆重召开,拓数派受邀参与本次大会,PieCloudDB 技术专家邱培峰在大会做了《云原生虚拟数仓 PieCloudDB ETL 方案设计与实现》的主题演讲,详…...

在UE4虚幻引擎中加入导航网格体边界体积后丧尸不能移动和发现玩家
UE4系列文章目录 文章目录 UE4系列文章目录前言一、用到的知识点二、问题原因 前言 最近使用ue4做第一人称视角射击游戏发现问题,加入导航网格体边界体积后丧尸不能移动和发现玩家。下图是出现的问题图片 一、用到的知识点 1.行为树:控制并显示AI的决…...

华为数通方向HCIP-DataCom H12-821题库(单选题:221-240)
第201题 BGP 协议用 beer default-route-advertise 命令来给邻居发布缺省路由,那么以下关于本地 BGP 路由表变化的描述,正确的是哪一项? A、在本地 BGP 路由表中生成一条活跃的缺省路由并下发给路由表 B、在本地 BGP 路由表中生成一条不活跃的缺省路由,但不下发给…...

aarch64 arm64 部署 stable diffusion webui 笔记 【1】准备 venv 安装pytorch 验证cuda
aarch64 pytorch(没有aarch64对应版本,自行编译) pytorch-v2.0.1 cuda arm64 aarch64 torch 2.0.1cu118 源码编译笔记【2】验证cuda安装 成功_hkNaruto的博客-CSDN博客 创建venv [rootceph3 stable-diffusion-webui]# /usr/local/Python-3.10.12/bin/python3 -m v…...
从方法到目标了解什么是机器学习?
一、什么是机器学习 1、简述 机器学习是 人工智能(AI) 和计算机科学的一个分支,专注于利用数据和算法来模仿人类的学习方式,逐步提高其准确性。过去几十年来,存储和处理能力方面的技术进步催生了一些基于机器学习的创新产品,例如 Netflix 的推荐引擎和自动驾驶汽车。 机…...

Devos勒索病毒:网络安全的新威胁,勒索病毒解密,数据恢复
随着信息技术的飞速发展,网络安全问题日益凸显。近年来,一种名为Devos的勒索病毒在全球范围内肆虐,给企业和个人带来了极大的损失。本文将详细介绍Devos勒索病毒的特点、传播途径以及预防和应对措施,帮助大家更好地认识和防范这一…...

go语言的高级特性
go语言调用C语言 go tool cgo main.go...
华为VRP系统基本操作
1.实验目的 掌握一些常见的路由命令。 2.实验步骤 查看设备版本信息 display version 修改设备的名字 进入系统视图 system-view修改设备名称 sysname Datacom-Router进入接口视图 int g0/0/1进入到接口GigabitEthernet0/0/1的视图 interface GigabitEthernet 0/0/1dis…...

Milvus Cloud扩展变更:为向量数据库注入前沿增强功能
在向量数据库的不断变化中,Milvus Cloud已成为一个改变游戏规则的先锋,革新了我们存储、搜索和分析复杂向量数据的方式。通过最新版本的Milvus Cloud2.3.0,引入了一系列重要的增强和修改,为更强大、更高效的向量数据库解决方案铺平了道路。在本文中,我们将深入探讨Milvus …...
外观模式简介
概念: 外观模式(Facade Pattern)是一种结构型设计模式,它提供了一个统一的接口,用于访问子系统中的一组接口。外观模式隐藏了子系统的复杂性,并将其封装在一个简单易用的接口中,使得客户端可以…...

web pdf 拖拽签章
web pdf 拖拽签章 主要通过火狐的pdfjs 来实现 1. 下载js 并编译 地址 https://mozilla.github.io/pdf.js/ 按照官网当下下载并编译就得到了js 2.其实也没有什么好讲的,都是用的js中的方法,官网中都有 按照步骤就能生成一个document元素,然…...
SQLAlchemy 库创建数据库引擎和会话工厂附带SQLSERVER驱动版本确认方式
SQLAlchemy 库创建数据库引擎和会话工厂 from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker# 创建数据库引擎 engine create_engine(mssqlpyodbc://user:passhost:port/database?driverODBCDriver11forSQLServer)# 创建会话工厂 Session sess…...

用Python登录账户
1 问题 如何利用python登录账户? 2 方法 账户和密码存放在文件夹中从文件夹中读取并比较密码密文验证三次后,如不成功则锁定用户 通过。。。。。。。。等证明提出的方法是有效的,能够解决开头提出的问题。 代码清单 1 import osimport getpas…...
梳理下我自已对Reactor与及IO多路复用的select\poll\epoll的理解
Reactor是一种设计思想的落地,其中IO多路复用的具体落地:select\poll\epoll。都是基于Reactor的延伸。它的核心是Reactor与资源处理器。Reactor负责监听与事件的分发,事件包括连接事件、读事件、写事件。 具体的流程是系统调用监听请求&…...

4. 广播变量
一、分区规则(DataStream Broadcast)和广播变量(Flink Broadcast) 1.1 DataStream Broadcast(分区规则) 分区规则是把元素广播给所有的分区,数据会被重复处理。 DataStream.broadcast()1.…...

MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

【2025年】解决Burpsuite抓不到https包的问题
环境:windows11 burpsuite:2025.5 在抓取https网站时,burpsuite抓取不到https数据包,只显示: 解决该问题只需如下三个步骤: 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...
VTK如何让部分单位不可见
最近遇到一个需求,需要让一个vtkDataSet中的部分单元不可见,查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行,是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示,主要是最后一个参数,透明度…...

初学 pytest 记录
安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

HDFS分布式存储 zookeeper
hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...

无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...
C语言中提供的第三方库之哈希表实现
一. 简介 前面一篇文章简单学习了C语言中第三方库(uthash库)提供对哈希表的操作,文章如下: C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...